当前位置: 首页 > news >正文

第四十篇 DDP模型并行

摘要

分布式数据并行(DDP)技术是深度学习领域中的一项重要技术,它通过将数据和计算任务分布在多个计算节点上,实现了大规模模型的并行训练。

DDP技术的基本原理是将数据和模型参数分割成多个部分,每个部分由一个计算节点负责处理。在训练过程中,每个节点独立计算梯度,然后通过通信机制将梯度汇总到主节点,主节点对梯度进行平均处理后,再将更新后的参数分发到各个节点。这种机制既保证了训练的并行性,又确保了模型参数的一致性。

在通信机制方面,DDP通常使用高速网络(如以太网、InfiniBand)和高效的通信协议(如NCCL、Gloo)来确保节点间的低延迟通信。此外,为了优化通信性能,DDP还采用了梯度压缩、异步通信等策略。

一、DP和DDP

pytorch中的有两种分布式训练方式,一种是常用的DataParallel(DP),另外一种是DistributedDataParallel(DDP),两者都可以用来实现数据并行方式的分布式训练,DP采用的是PS模式,DDP采用的是ring-all-reduce模式,两种分布式训练模式主要区别如下:

1、DP是单进程多线程的实现方式,DDP是采用多进程的方式。

2、DP只能在单机上使用,DDP单机

相关文章:

第四十篇 DDP模型并行

摘要 分布式数据并行(DDP)技术是深度学习领域中的一项重要技术,它通过将数据和计算任务分布在多个计算节点上,实现了大规模模型的并行训练。 DDP技术的基本原理是将数据和模型参数分割成多个部分,每个部分由一个计算节点负责处理。在训练过程中,每个节点独立计算梯度,…...

软件测试面试之常规问题

1.描述一下测试过程 类似题目:测试的生命周期 思路:这是一个“范围”很大的题目,而且回答时间一般在3分钟之内,不可能非常详细的描述整个过程,因此答题的思路要从整体结构入手,不要过细。为了保证答案的准确性,可以引…...

《图像形态学运算全解析:原理、语法及示例展示》

简介: 本文详细介绍了图像形态学中的多种运算,包括腐蚀、膨胀、开运算、闭运算、形态学梯度运算、礼帽运算以及黑帽运算。分别阐述了各运算的原理、语法格式,并通过 Python 代码结合具体示例图片(如erode.JPG、dilate.JPG、close.…...

双十一线上服务调用链路追踪SkyWalking实战分析

序言 随着电商行业的飞速发展,双十一购物节已成为全球最大的购物狂欢节之一。在双十一期间,电商平台需要处理海量的用户请求和订单,这对系统的稳定性和性能提出了极高的要求。为了确保系统在高并发环境下的稳定运行,对线上服务的…...

网络安全究竟是什么? 如何做好网络安全

网络安全是如何工作的呢? 网络安全结合多层防御的优势和网络。每个网络安全层实现政策和控制。授权用户访问网络资源,但恶意参与者不得进行攻击和威胁。 我如何受益于网络安全? 数字化改变了我们的世界。我们的生活方式、工作、玩耍,和学习都发生了变化。每个组织希望提供…...

【C++】入门【一】

本节目标 一、C关键字(C98) 二、命名空间 三、C的输入输出 四、缺省函数 五、函数重载 六、引用 七、内联函数 八、auto关键字(C11) 九、范围for(C11) 十、指针空值nullptr(C11) 一.…...

【ArcGIS Pro实操第11期】经纬度数据转化成平面坐标数据

经纬度数据转化成平面坐标数据 数据准备ArcGIS操作步骤-投影转换为 Sinusoidal1 投影2 计算几何Python 示例 另:Sinusoidal (World) 和 Sinusoidal (Sphere) 的主要区别参考 数据准备 数据投影: 目标投影:与MODIS数据相同(Sinu…...

python学opencv|读取图像

【1】引言 前序学习了使用matplotlib模块进行画图,今天开始我们逐步尝试探索使用opencv来处理图片。 【2】学习资源 官网的学习链接如下: OpenCV: Getting Started with Images 不过读起来是英文版,可能略有难度,所以另推荐一…...

ffmpeg RTP PS推流

要实现 CRtpSendPs 类,使其能够将 H264 数据通过 RTP PS 流推送到指定的 URL,并支持 TCP 和 UDP 传输方式,您需要使用 FFmpeg 库。以下是该类的实现示例,包括必要的初始化、推流和退出函数。 步骤 初始化 FFmpeg 库:…...

Rust语言俄罗斯方块(漂亮的界面案例+详细的代码解说+完美运行)

tetris-demo A Tetris example written in Rust using Piston in under 500 lines of code 项目地址: https://gitcode.com/gh_mirrors/te/tetris-demo 项目介绍 "Tetris Example in Rust, v2" 是一个用Rust语言编写的俄罗斯方块游戏示例。这个项目不仅是一个简单…...

NUMA架构及在极速网络IO场景下的优化实践

NUMA技术原理 NUMA架构概述 随着多核CPU的普及,传统的对称多处理器(SMP)架构逐渐暴露出性能瓶颈。为了应对这一问题,非一致性内存访问(NUMA, Non-Uniform Memory Access)架构应运而生。NUMA架构是一种内存…...

Brain.js 用于浏览器的 GPU 加速神经网络

Brain.js 是一个强大的 JavaScript 库,它允许开发者在浏览器和 Node.js 环境中构建和训练神经网络 。这个库的目的是简化机器学习模型的集成过程,使得即使是没有深厚机器学习背景的开发者也能快速上手 。 概述 Brain.js 提供了易于使用的 API&#xff…...

Linux——用户级缓存区及模拟实现fopen、fweite、fclose

linux基础io重定向-CSDN博客 文章目录 目录 文章目录 什么是缓冲区 为什么要有缓冲区 二、编写自己的fopen、fwrite、fclose 1.引入函数 2、引入FILE 3.模拟封装 1、fopen 2、fwrite 3、fclose 4、fflush 总结 前言 用快递站讲述缓冲区 收件区(类比输…...

视觉感知与处理:解密计算机视觉的未来

文章目录 前言1. 计算机视觉的概述2. 计算机视觉的应用3. 运动感知与光流4. 人类视觉感知4.1 大脑中的视觉处理4.2 视觉缺陷与对比4.3 分辨率4.4 视觉错觉5. 图像采集与处理6. 图像处理流程7. 二值图像处理与分割8. 3D 机器视觉系统8.1 主动3D视觉8.2 立体视觉9. 商业机器视觉系…...

【大数据学习 | Spark-Core】广播变量和累加器

1. 共享变量 Spark两种共享变量:广播变量(broadcast variable)与累加器(accumulator)。 累加器用来对信息进行聚合,相当于mapreduce中的counter;而广播变量用来高效分发较大的对象&#xff0c…...

postgresql按照年月日统计历史数据

1.按照日 SELECT a.time,COALESCE(b.counts,0) as counts from ( SELECT to_char ( b, YYYY-MM-DD ) AS time FROM generate_series ( to_timestamp ( 2024-06-01, YYYY-MM-DD hh24:mi:ss ), to_timestamp ( 2024-06-30, YYYY-MM-DD hh24:mi:ss ), 1 days ) AS b GROUP BY tim…...

pywin32库 -- 读取word文档中的图形

文章目录 前置操作解析body中的图形解析页眉中的图形 前置操作 基于pywin32打开、关闭word应用程序; import pythoncom from win32com.client import Dispatch, GetActiveObjectdef get_word_instance():""" 获取word进程 实例"""py…...

GitLab使用示例

以下是从 新建分支开始,配置 GitLab CI/CD 的完整详细流程,涵盖每个步骤、配置文件路径和具体示例。 1. 新建分支并克隆项目 1.1 在 GitLab 上创建新分支 登录 GitLab,进入目标项目页面。依次点击 Repository > Branches。点击右上角 Ne…...

uniapp echarts tooltip formation 不识别html

需求: echarts 的tooltip 的域名太长,导致超出屏幕 想要让他换行 思路一: 用formation自定义样式实现换行 但是: uniapp 生成微信小程序, echart种的tooltip 的formation 识别不了html ,自定义样式没办…...

3D扫描对文博行业有哪些影响?

三维扫描技术对文博行业产生了深远的影响,主要体现在以下几个方面: 一、高精度建模与数字化保护 三维扫描技术通过高精度扫描设备,能够捕捉到文物的每一个细节,包括形状、纹理、颜色等,从而生成逼真的3D模型。这些模…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

2021-03-15 iview一些问题

1.iview 在使用tree组件时&#xff0c;发现没有set类的方法&#xff0c;只有get&#xff0c;那么要改变tree值&#xff0c;只能遍历treeData&#xff0c;递归修改treeData的checked&#xff0c;发现无法更改&#xff0c;原因在于check模式下&#xff0c;子元素的勾选状态跟父节…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...