【NLP高频面题 - 分布式训练】ZeRO1、ZeRO2、ZeRO3分别做了哪些优化?
【NLP高频面题 - 分布式训练】ZeRO1、ZeRO2、ZeRO3分别做了哪些优化?
重要性:★★
NLP Github 项目:
-
NLP 项目实践:fasterai/nlp-project-practice
介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用,分享大模型算法工程师的日常工作和实战经验
-
AI 藏经阁:https://gitee.com/fasterai/ai-e-book
介绍:该仓库主要分享了数百本 AI 领域电子书
-
AI 算法面经:fasterai/nlp-interview-handbook#面经
介绍:该仓库一网打尽互联网大厂NLP算法面经,算法求职必备神器
-
NLP 剑指Offer:https://gitee.com/fasterai/nlp-interview-handbook
介绍:该仓库汇总了 NLP 算法工程师高频面题
ZeRO被分为了三个级别:
- ZeRO1:对优化器状态进行拆分。显存消耗减少 4 倍,通信量与数据并行相同。
- ZeRO2:在ZeRO1的基础上,对梯度进行拆分。显存消耗减少 8 倍,通信量与数据并行相同。
- ZeRO3:在ZeRO2的基础上,对模型参数进行拆分。模型占用的显存被平均分配到每个 GPU 中,显存消耗量与数据并行的并行度成线性反比关系,但通信量会有些许增加。
论文中给出了三个阶段的显存消耗分布情况:

ZeRO1
模型训练中,正向传播和反向传播并不会用到优化器状态,只有在梯度更新的时候才会使用梯度和优化器状态计算新参数。因此每个进程单独使用一段优化器状态,对各自进程的参数更新完之后,再把各个进程的模型参数合并形成完整的模型。
假设我们有 𝑁𝑑 个并行的进程,ZeRO-1 会将完整优化器的状态等分成 𝑁𝑑 份并储存在各个进程中。当反向传播完成之后,每个进程的优化器会对自己储存的优化器状态(包括Momentum、Variance 与 FP32 Master Parameters)进行计算与更新。更新过后的Partitioned FP32 Master Parameters会通过All-gather传回到各个进程中。完成一次完整的参数更新。
通过 ZeRO-1 对优化器状态的分段化储存,7.5B 参数量的模型内存占用将由原始数据并行下的 120GB 缩减到 31.4GB。
ZeRO2
第二阶段中对梯度进行了拆分,在一个Layer的梯度都被计算出来后: 梯度通过All-reduce进行聚合, 聚合后的梯度只会被某一个进程用来更新参数,因此其它进程上的这段梯度不再被需要,可以立马释放掉。
通过 ZeRO-2 对梯度和优化器状态的分段化储存,7.5B 参数量的模型内存占用将由 ZeRO-1 中 31.4GB 进一步下降到 16.6GB。
ZeRO3
第三阶段就是对模型参数进行分割。在ZeRO3中,模型的每一层都被切片,每个进程存储权重张量的一部分。在前向和后向传播过程中(每个进程仍然看到不同的微批次数据),不同的进程交换它们所拥有的部分(按需进行参数通信),并计算激活函数和梯度。
初始化的时候。ZeRO3将一个模型中每个子层中的参数分片放到不同进程中,训练过程中,每个进程进行正常的正向/反向传播,然后通过All-gather进行汇总,构建成完整的模型。
NLP 大模型高频面题汇总
NLP基础篇
-
【NLP 面试宝典 之 模型分类】 必须要会的高频面题
-
【NLP 面试宝典 之 神经网络】 必须要会的高频面题
-
【NLP 面试宝典 之 主动学习】 必须要会的高频面题
-
【NLP 面试宝典 之 超参数优化】 必须要会的高频面题
-
【NLP 面试宝典 之 正则化】 必须要会的高频面题
-
【NLP 面试宝典 之 过拟合】 必须要会的高频面题
-
【NLP 面试宝典 之 Dropout】 必须要会的高频面题
-
【NLP 面试宝典 之 EarlyStopping】 必须要会的高频面题
-
【NLP 面试宝典 之 标签平滑】 必须要会的高频面题
-
【NLP 面试宝典 之 Warm up 】 必须要会的高频面题
-
【NLP 面试宝典 之 置信学习】 必须要会的高频面题
-
【NLP 面试宝典 之 伪标签】 必须要会的高频面题
-
【NLP 面试宝典 之 类别不均衡问题】 必须要会的高频面题
-
【NLP 面试宝典 之 交叉验证】 必须要会的高频面题
-
【NLP 面试宝典 之 词嵌入】 必须要会的高频面题
-
【NLP 面试宝典 之 One-Hot】 必须要会的高频面题
-
…
BERT 模型面
LLMs 微调面
相关文章:
【NLP高频面题 - 分布式训练】ZeRO1、ZeRO2、ZeRO3分别做了哪些优化?
【NLP高频面题 - 分布式训练】ZeRO1、ZeRO2、ZeRO3分别做了哪些优化? 重要性:★★ NLP Github 项目: NLP 项目实践:fasterai/nlp-project-practice 介绍:该仓库围绕着 NLP 任务模型的设计、训练、优化、部署和应用&am…...
android 安全sdk相关
前述 在网上有看到许多android安全sdk相关的内容,有重复的也有比较新鲜的内容,这里做一个整体的合集,以及后续又看到一些比较新的东西会一起放在这里。 android内sdk目前可以分为以下几个部分(有一些部分可能会存在一些重合&#…...
NVR监测软件EasyNVR多个NVR同时管理:录播主机的5条常见问题与解决办法
视频监控广泛应用于城市治安、交通管理、商业安保及家庭监控等领域。在使用EasyNVR平台管理多个NVR设备时,尤其是涉及到海康录播主机的场景中,使用者可能会遇到一些常见问题。本文将探讨海康录播主机的五个常见问题及其解决办法。 1、海康录播主机的5条常…...
Z2400027基于Java+SpringBoot+Mysql+thymeleaf引擎的图书馆管理系统的设计与实现 代码 论文
图书馆管理系统的设计与实现 一、项目背景与简介二、系统总体功能三、运行环境与技术选型四、系统架构与模块划分五、系统界面截图六、源码获取 一、项目背景与简介 项目背景: 随着信息技术的不断发展和图书资源的日益丰富,图书馆作为知识传播和学习的重…...
完美解决Docker pull时报错:https://registry-1.docker.io/v2/
1、错误描述 rootubuntu-database:/opt/dify/docker# docker compose up -d [] Running 9/9✘ api Error context canceled …...
A051-基于Spring Boot的网络海鲜市场系统的设计与实现
🙊作者简介:在校研究生,拥有计算机专业的研究生开发团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹 赠送计算机毕业设计600…...
【组件】前端ElementUi 下拉Tree树形组件 带模糊搜索自动展开高亮功能 树结构 封装为组件使用
【组件】前端ElementUi 下拉Tree树形组件 带模糊搜索自动展开高亮功能 树结构 【组件】前端ElementUi 下拉Tree树形组件 带模糊 https://live.csdn.net/v/436057 单独使用 <template><div><el-popoverstyle"overflow-y: auto; "placement"bottom…...
Blender 运行python脚本
Blender 运行python脚本 步骤 1:打开 Blender 首先,打开 Blender 软件。你可以从官方网站 [blender.org]( 下载最新的 Blender 版本,并按照安装向导进行安装。 步骤 2:打开“文本编辑器”面板 在 Blender 的默认布局中ÿ…...
递归:求fib数列的第n项,前几项是1,1,2,3,5,每一项都等于前面两项的和:JAVA
链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 求fib数列的第n项,前几项是1,1,2,3,5,每一项都等于前面两项的和 输入描述: 输入一个整数n,n<46 输出描述: 输出一个…...
三分钟快速掌握——Linux【vim】的使用及操作方法
一、vim的使用 vim是一个文本编辑器 非常小巧轻便 1.1如何进入vim编辑器 方法一: 首先使用touch 1.c 创建一个源文件 然后使用vim 1.c进入 方法二: 直接使用指令 vim 2.c 会直接创建一个2.c的源文件 退出时记得保存(使用wq或者x&am…...
Wrapper包装类
包装类又叫封装类,Java的数据类型有两种,基础数据类型是基础的,从狭义的角度看它们不是面向对象的,在引用数据类型中,有八个引用数据类型对应了八个基础数据类型,这个八个引用数据类型就叫做基础数据类型的…...
MySQL高级(六):全局锁、表锁和行锁
全局锁 (Global Lock) 定义 全局锁作用于整个 MySQL 实例。加上全局锁后,整个数据库实例会被锁定,其他线程无法对数据库中的任何表或数据进行读写操作。 使用方式 通过命令 FLUSH TABLES WITH READ LOCK (FTWRL) 来加全局锁。 特点 影响范围&#…...
【CLIP】3: semantic-text2image-search允许局域网访问
前后端都是局域网的在同一局域网内的其他设备上,打开浏览器,访问 http://192.168.50.197:5173/。前端 前端默认是本地的 (semantic-text2image-search) root@k8s-master-pfsrv:/home/zhangbin/perfwork/01_ai/01_semantic-text2image-search/frontend# npm run dev> web@…...
FPGA实现GTP光口视频转USB3.0传输,基于FT601+Aurora 8b/10b编解码架构,提供3套工程源码和技术支持
目录 1、前言工程概述免责声明 2、相关方案推荐我已有的所有工程源码总目录----方便你快速找到自己喜欢的项目我这里已有的 GT 高速接口解决方案本博已有的FPGA驱动USB通信方案 3、工程详细设计方案工程设计原理框图输入Sensor之-->OV5640摄像头输入Sensor之-->芯片解码的…...
docker搭建nginx
一. 直接启动nginx镜像 1. 下载nginx镜像 docker pull nginx 2. 运行镜像 docker run -p 8080:80 --name web -d nginx 3. 网址查看 xx.xx.xx.xx:8080 二. 挂在文件启动nginx镜像 1. 拷贝docker文件到本地 docker cp web:/etc/nginx/nginx.conf /root/data/config/nginx…...
Java 17的新特性及其对现代Java开发的影响
Java 17作为一个长期支持(LTS)版本,于2021年9月14日发布,引入了多项重要的新特性,这些特性不仅提高了Java语言的表现力和安全性,还优化了性能。本文将详细介绍Java 17的关键新特性,并探讨这些特…...
【Flink】快速理解 FlinkCDC 2.0 原理
快速理解 FlinkCDC 2.0 原理 要详细理解 Flink CDC 原理可以看看这篇文章,讲得很详细:深入解析 Flink CDC 增量快照读取机制 (https://juejin.cn/post/7325370003192578075)。 FlnkCDC 2.0: Flink 2.x 引入了增量快照读取机制,…...
使用R的数据包快速获取、调用各种地理数据
数据一直是科学研究绕不开的话题,为了方便快捷的获取各种地理数据,许多R包被开发出来,今天介绍一些方便快捷的数据R包。 rnaturalearth 包使 Natural Earth 数据可用。自然地球特征包括 1:10m、1:50m 和 1:…...
scrapy豆瓣爬虫增强-批量随机请求头
1.1 豆瓣爬虫增强,中间件随机请求头 1.2 清除原有的中间件,进行中间件测试 1.3 导入全新的中间件 1.4 运行爬虫,这个时候的请求头是固定的 1.5 强化对agent的输出,会舍弃输出cookie,使输出更明了 1.6 转移输出请求头位置 新增输出 造成这样问题的原因是Douban/Douban/settings…...
基于华为昇腾910B,实战InternLM个人小助手认知微调
本文将带领大家基于华为云 ModelArts,使用 XTuner 单卡微调一个 InternLM 个人小助手。 开源链接:(欢迎 star) https://github.com/InternLM/InternLM https://github.com/InternLM/xtuner XTuner 简介 XTuner 是一个高效、灵…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
Ubuntu系统多网卡多相机IP设置方法
目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机,交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息,系统版本:Ubuntu22.04.5 LTS;内核版本…...
Windows电脑能装鸿蒙吗_Windows电脑体验鸿蒙电脑操作系统教程
鸿蒙电脑版操作系统来了,很多小伙伴想体验鸿蒙电脑版操作系统,可惜,鸿蒙系统并不支持你正在使用的传统的电脑来安装。不过可以通过可以使用华为官方提供的虚拟机,来体验大家心心念念的鸿蒙系统啦!注意:虚拟…...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...
