基于深度学习的手势识别算法
基于深度学习的手势识别算法
- 概述
- 算法原理
- 核心逻辑
- 效果演示
- 使用方式
- 参考文献
概述
本文基于论文 [Simple Baselines for Human Pose Estimation and Tracking[1]](ECCV 2018 Open Access Repository (thecvf.com)) 实现手部姿态估计。
手部姿态估计是从图像或视频帧集中找到手部关节位置的任务。近年来,姿态估计取得了显著进展。同时,姿态估计相关算法和系统的复杂性也在增加,使得算法分析和比较变得更加困难。
对此,该论文[1]提供了简单且有效的基线方法。具体来说,该论文所提出的姿态估计方法基于在骨干网络 ResNet 上添加的几个反卷积层,以此从深层和低分辨率特征图估计热图(Heatmap)。
- 参考文献:本文所涉及的所有资源的获取方式:https://www.aspiringcode.com/content?id=17111441004954&uid=ca17507691274861976eacc1dfc5d827
算法原理
ResNet [2] 是图像特征提取中最常见的骨干网络,也常常被用于姿态估计。本文所使用的模型在 ResNet 的最后一个卷积阶段上简单添加了几个反卷积层。基于这种方式,其可以利用深层和低分辨率的特征生成热图,并基于热图估计关节位置。整个网络结构如图 2 所示,其使用了三个具有批量归一化和 ReLU 激活的反卷积层。每层有256个 4×4 内核的滤波器,步幅为 2。最后添加一个 1×1 的卷积层,以生成所有 k 个关键点的预测热图。
均方误差 (MSE) 被用作预测热图和目标热图之间的损失。关节 k 的目标热图是通过在第 k 个关节的真实位置上应用二维高斯分布生成的。训练过程中的损失变化如图3所示。我选取了 FreiHand[3] 作为数据集,ResNet-18 作为骨干网络进行训练。FreiHand 的训练集包含 130240 张尺寸为 224 × 224 的RGB图像。
将训练完成后的模型应用于FreiHAND测试集,得到结果如图4所示
图4:手势识别结果
核心逻辑
模型结构如下所示:
import torch
import torch.nn as nn
import torchvision.models as modelsclass PoseNetwork(nn.Module):def __init__(self, joints_num=21, depth=50, pretrained=False):super(PoseNetwork, self).__init__()if pretrained:weights = 'DEFAULT'else:weights = Noneif depth == 18:resnet = models.resnet18(weights = weights)elif depth == 34:resnet = models.resnet34(weights = weights)elif depth == 50:resnet = models.resnet50(weights = weights)elif depth == 101:resnet = models.resnet101(weights = weights)elif depth == 152:resnet = models.resnet152(weights = weights)else:resnet = models.resnet50()self.encoder = nn.Sequential(*list(resnet.children())[:-2])self.decoder = nn.Sequential(nn.ConvTranspose2d(resnet.inplanes, 256, kernel_size=4, stride=2, padding=1, output_padding=0, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.ConvTranspose2d(256, 256, kernel_size=4, stride=2, padding=1, output_padding=0, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.ConvTranspose2d(256, 256, kernel_size=4, stride=2, padding=1, output_padding=0, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, joints_num, kernel_size=1, stride=1))def forward(self, x):x = self.encoder(x)x = self.decoder(x)return x
以上代码仅作展示,更详细的代码文件请参见附件。
效果演示
配置环境并运行 main.py脚本,效果如图4所示。
此外,网站还提供了在线体验功能。用户只需要输入一张大小不超过 1MB 的单手 JPG 图像,网站就会标记出图中手的姿势,如图6所示。
图6:在线体验结果
使用方式
- 解压附件压缩包并进入工作目录。如果是Linux系统,请使用如下命令:
unzip hand-pose-estimation.zip
cd hand-pose-estimation
- 代码的运行环境可通过如下命令进行配置:
pip install -r requirements.txt
- 如果希望在本地运行实时手势识别程序,请运行如下命令:
python main.py
- 如果希望在本地运行训练模型,请运行如下命令:
python main.py -r "train"
- 请注意,训练前需要自行制作或下载并处理相关公开数据集,具体格式可以参考我事先基于FreiHAND制作的一个迷你的样例数据集,其位于data\datasets\mini-example。
- 如果希望在线部署,请运行如下命令:
python main-flask.py
参考文献
[1] Xiao B, Wu H, Wei Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 466-481.
[2] Targ S, Almeida D, Lyman K. Resnet in resnet: Generalizing residual architectures[J]. arXiv preprint arXiv:1603.08029, 2016.
[3] Zimmermann C, Ceylan D, Yang J, et al. Freihand: A dataset for markerless capture of hand pose and shape from single rgb images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019: 813-822.
- 参考文献:本文所涉及的所有资源的获取方式:https://www.aspiringcode.com/content?id=17111441004954&uid=ca17507691274861976eacc1dfc5d827
相关文章:

基于深度学习的手势识别算法
基于深度学习的手势识别算法 概述算法原理核心逻辑效果演示使用方式参考文献 概述 本文基于论文 [Simple Baselines for Human Pose Estimation and Tracking[1]](ECCV 2018 Open Access Repository (thecvf.com)) 实现手部姿态估计。 手部姿态估计是从图像或视频帧集中找到手…...
helm部署golang服务
Helm 是 Kubernetes 的一个包管理工具,类似于 Linux 中的 apt 或 yum。它使得在 Kubernetes 上部署和管理应用程序变得更加简单和高效。 安装 https://get.helm.sh/helm-v3.16.3-linux-amd64.tar.gz具体版本号可以在github上看到最新的版本号,然后替换上面链接来获取。gith…...

DreamCamera2相机预览变形的处理
最近遇到一个问题,相机更换了摄像头后,发现人像角度顺时针旋转了90度,待人像角度正常后,发现 预览时图像有挤压变形,最终解决。在此记录 一人像角度的修改 先放示意图 设备预览人像角度如图1所示,顺时针旋…...
Mysql误删表中数据与误删表的恢复方法
查看数据库是否开启binlog日志 mysql> show variables like %log_bin%; ------------------------------------------------------------------------ | Variable_name | Value | ------------------------------------…...
lapack、blas、solver库的区别和联系
LAPACK、BLAS、Solver 库 是数值计算领域的重要组成部分,它们各自的功能和设计目标有所不同,但也存在密切的联系。 1. 概述 库主要功能设计目标BLAS提供基础的线性代数操作,如向量运算、矩阵-向量乘法、矩阵-矩阵乘法等。提供高度优化的基础线性代数操作,作为更高级库的底层…...

deepin 安装 chrome 浏览器
deepin 安装 chrome 浏览器 最近好多小伙伴儿和我说 deepin 无法安装最新的谷歌浏览器 其实是因为最新的 谷歌浏览器 其中的一个依赖需要提前安装 提前安装依赖然后再安装谷歌浏览器就可以了 安装 fonts-liberationsudo apt -y install fonts-liberation安装 chrome 浏览器sudo…...

永久免费的PDF万能水印删除工具
永久免费的PDF万能水印删除工具 1.简介 PDF万能水印删除工具,可以去除99.9%的PDF水印。例如:XObject水印(含图片水印)、文本水印、绘图水印/曲线水印、注释水印、工件水印、剪切路径水印等等。本软件是永久免费,无有…...

Linux网络——NAT/代理服务器
一.NAT技术 1.NAT IP转换 之前我们讨论了, IPv4 协议中, IP 地址数量不充足的问题,NAT 技术就是当前解决 IP 地址不够用的主要手段, 是路由器的一个重要功能。 NAT 能够将私有 IP 对外通信时转为全局 IP. 也就是一种将私有 IP 和全局IP 相互转化的技术方法: 很…...

大米中的虫子检测-检测储藏的大米中是否有虫子 支持YOLO,VOC,COCO格式标注,4070张图片的数据集
大米中的虫子检测-检测储藏的大米中是否有虫子 支持YOLO,VOC,COCO格式标注,4070张图片的数据集 数据集分割 4070总图像数 训练组 87% 3551图片 有效集 9% 362图片 测试集 4% 157图片 预处理 自动定向…...

基于Java的小程序电商商城开源设计源码
近年来电商模式的发展越来越成熟,基于 Java 开发的小程序电商商城开源源码,为众多开发者和企业提供了构建个性化电商平台的有力工具。 基于Java的电子商城购物平台小程序的设计在手机上运行,可以实现管理员;首页、个人中心、用户…...
node.js基础学习-fs模块-文件操作(六)
一、前言 fs模块是 Node.js 内置的文件系统(File System)模块,它提供了一系列用于与文件系统进行交互的方法。通过fs模块,可以对文件或目录进行读取、写入、删除、重命名、查询状态等操作,这使得 Node.js 能够很好地处…...

设计模式:11、迭代器模式(游标)
目录 0、定义 1、迭代器模式的四种角色 2、迭代器模式的UML类图 3、示例代码 4、迭代器的next()方法与集合的get(int index)方法的效率对比(LinkedList为例) 0、定义 提供一种方法顺序访问一个聚合对象中的各个元素,而又不需要暴露该对象…...

Oracle SCN与时间戳的映射关系
目录 一、基本概述 二、相关操作 三、参考文档 一、基本概述 Oracle 数据库中的 SYS.SMON_SCN_TIME 表是一个关键的内部表,主要用于记录过去时间段中SCN与具体的时间戳之间的映射关系。这种映射关系可以帮助用户将 SCN 值转换为可读性更强的时间戳,从而…...

【广告投放系统】头条可视化投放平台vue3+element-plus+vite落地历程和心得体会
前言 hallo,又是许久未见,昨天也是正式把公司内部的广告投放平台暂时落地,我也即将离开待了两年多的地方。言归正传,由于头条广告后台的升级改版,因此为了满足内部投放需求,做了一个可视化的投放平台&…...
Gazebo插件相机传感器(可订阅/camera/image_raw话题)
在仿真环境中使用相机传感器,通常需要结合Gazebo插件来实现。Gazebo是一个功能强大的机器人仿真工具,支持多种传感器模型,包括相机。下面是如何在Gazebo中使用相机传感器的详细步骤。 1. 修改Xacro文件以包含Gazebo插件 首先,修…...

华三(HCL)和华为(eNSP)模拟器共存安装手册
接上章叙述,解决同一台PC上同时部署华三(HCL)和华为(eNSP)模拟器。原因就是华三HCL 的老版本如v2及以下使用VirtualBox v5版本,可以直接和eNSP兼容Oracle VirtualBox,而其他版本均使用Oracle VirtualBox v6以上的版本,…...

信息学奥赛一本通 1448:【例题1】电路维修 | 洛谷 P4667 [BalticOI 2011 Day1] Switch the Lamp On 电路维修
【题目链接】 ybt 1448:【例题1】电路维修 洛谷 P4667 [BalticOI 2011 Day1] Switch the Lamp On 电路维修 【题目考点】 1. 双端队列广搜(0-1BFS) 【解题思路】 整个电路是由一个个的正方形的电路元件组成,每个正方形有四个…...

k8s删除网络组件错误
k8s集群删除calico网络组件重新部署flannel网络组件,再部署pod后出现报错不能分配ip地址 plugin type"calico" failed (add): error getting ClusterInformation: connection is unauthorized: Unauthorized 出现该问题是因为删除网络组件后,网…...

MySQL之JDBC
我们在学习完了数据库的基本操作后,希望和我们的Java程序建立连接,那么我们今天就来一探究竟JDBC是如何让Java程序与数据库建立连接的 1. 什么是JDBC JDBC(Java Data Base Connectivity, Java数据库连接) 是Java程序和数据库之间…...

音视频入门基础:MPEG2-TS专题(10)——PAT简介
一、引言 当某个transport packet的TS Header中的PID属性的值为0x0000时,该transport packet的payload为Program association table ,即 PAT表。PAT表包含所有PMT表的目录列表,将program_number和PMT表的PID相关联,获取数据的起始…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...

【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...

手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...