当前位置: 首页 > news >正文

Prophet时间序列算法总结及python实现案例

目录

    • 一、prophet理论总结
    • 二、python导入模块方式
    • 三、python实现案例
      • 3.1帮助信息
      • 3.2 案例
    • 四、参考学习


一、prophet理论总结

prophet模型是facebook开源的一个时间序列预测算法。[1][2],该算法主要为处理具有周期性、趋势变化以及缺失值和异常值的时间序列数据而设计。适合处理日级别(‌或以上频率)‌的时间序列数据,‌设计考虑了业务场景中的时间序列特点,‌如季节性变化、‌假日效应和趋势变化。它的核心思想是将时间序列数据分解为趋势、季节性和假期效应三个部分。
Prophet能够自动检测数据中的趋势和季节性,‌并将它们组合在一起以获得预测值。‌它基于加法模型,‌将时间序列分解成趋势项、‌周期项、‌节假日项/特殊事件影响项以及残差项的组合,‌从而实现对时间序列的有效预测。此外,‌Prophet还提供了强大的可视化分析辅助工具,‌便于分析趋势、‌不同周期、‌不同节假日/特殊事件各自的贡献,‌使得模型解释性较强[^3]。

算法优点

  • 适用于具有季节性和趋势变化的时间序列。
  • 对缺失值和异常值具有较强的鲁棒性。
  • 模型易于使用,适合非专业用户。

算法缺点

  • 对于数据量很大的情况,计算可能会变得比较慢。
  • 对非平稳数据的处理较为简单,可能不足以处理复杂的非平稳特征。

应用场景

  • 适用于各种具有强季节性和趋势性的数据[^4]

Prophet模型既可以使用加法模型,也可以使用乘法模型
在这里插入图片描述

加法模型

  • y(t)=g(t)+s(s)+h(t)+e(t)
  • g(t)表示时间序列的趋势,用来拟合非周期性变化的。
  • s(t)用来表示时间序列的季节性。
  • h(t)表示时间序列的假期效应,节日等特殊原因等造成的变化。
  • e(t)为误差项,用他来表示随机无法预测的波动。

适用场景:通常情况下,加法模型适用于时间序列的趋势和季节性与数据规模无关的情况,例如气温和降雨量;

乘法模型

  • 在Prophet模型的乘法模型中,时间序列的预测值是趋势、季节性和假期效应的乘积
  • y(t)=g(t)∗s(t)∗h(t)∗e(t)

适用场景:用于时间序列的趋势和季节性与数据规模相关的情况,例如商品销售量和股票价格。

二、python导入模块方式

实际在程序导入该模块时,多次检查该模块已安装,但导入时总是提示如下错误[^6]:
ModuleNotFoundError: No module named ‘Prophet’
在这里插入图片描述

经过多次尝试和寻求解决方案,最终发现问题所在:
fbprophet 的命名空间可能会与其他库冲突。因此,fbprophet 在导入时通常使用:
from prophet import Prophet
而不是:
import fbprophet

正确的导入方式:

from prophet import Prophet

三、python实现案例

3.1帮助信息

通过pyhton的帮助,调用help(Prophet)查看如下帮助信息,有助于我们更好的了解python中,该函数具体有哪些参数以及相关参数的含义。

Prophet(growth='linear',changepoints=None,n_changepoints=25,changepoint_range=0.8,yearly_seasonality='auto',weekly_seasonality='auto',daily_seasonality='auto',holidays=None,seasonality_mode='additive',seasonality_prior_scale=10.0,holidays_prior_scale=10.0,changepoint_prior_scale=0.05,mcmc_samples=0,interval_width=0.8,uncertainty_samples=1000,stan_backend=None,scaling: str = 'absmax',holidays_mode=None,
)
Docstring:     
Prophet forecaster.Parameters
----------
growth: String 'linear', 'logistic' or 'flat' to specify a linear, logistic orflat trend.
changepoints: List of dates at which to include potential changepoints. Ifnot specified, potential changepoints are selected automatically.
n_changepoints: Number of potential changepoints to include. Not usedif input `changepoints` is supplied. If `changepoints` is not supplied,then n_changepoints potential changepoints are selected uniformly fromthe first `changepoint_range` proportion of the history.
changepoint_range: Proportion of history in which trend changepoints willbe estimated. Defaults to 0.8 for the first 80%. Not used if`changepoints` is specified.
yearly_seasonality: Fit yearly seasonality.Can be 'auto', True, False, or a number of Fourier terms to generate.
weekly_seasonality: Fit weekly seasonality.Can be 'auto', True, False, or a number of Fourier terms to generate.
daily_seasonality: Fit daily seasonality.Can be 'auto', True, False, or a number of Fourier terms to generate.
holidays: pd.DataFrame with columns holiday (string) and ds (date type)and optionally columns lower_window and upper_window which specify arange of days around the date to be included as holidays.lower_window=-2 will include 2 days prior to the date as holidays. Alsooptionally can have a column prior_scale specifying the prior scale forthat holiday.
seasonality_mode: 'additive' (default) or 'multiplicative'.
seasonality_prior_scale: Parameter modulating the strength of theseasonality model. Larger values allow the model to fit larger seasonalfluctuations, smaller values dampen the seasonality. Can be specifiedfor individual seasonalities using add_seasonality.
holidays_prior_scale: Parameter modulating the strength of the holidaycomponents model, unless overridden in the holidays input.
changepoint_prior_scale: Parameter modulating the flexibility of theautomatic changepoint selection. Large values will allow manychangepoints, small values will allow few changepoints.
mcmc_samples: Integer, if greater than 0, will do full Bayesian inferencewith the specified number of MCMC samples. If 0, will do MAPestimation.
interval_width: Float, width of the uncertainty intervals providedfor the forecast. If mcmc_samples=0, this will be only the uncertaintyin the trend using the MAP estimate of the extrapolated generativemodel. If mcmc.samples>0, this will be integrated over all modelparameters, which will include uncertainty in seasonality.
uncertainty_samples: Number of simulated draws used to estimateuncertainty intervals. Settings this value to 0 or False will disableuncertainty estimation and speed up the calculation.
stan_backend: str as defined in StanBackendEnum default: None - will try toiterate over all available backends and find the working one
holidays_mode: 'additive' or 'multiplicative'. Defaults to seasonality_mode.

3.2 案例

如下案例脚本,实际使用时,将数据处理成两列数据,模型整体的运行步骤和其他机器学习模型类似,需要注意的一点是:两列数据的名称必须是 ds 和 y 。因此实际处理完数据后,需要重命名列名称。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from prophet import Prophet  # 使用 prophet 替代 fbprophet# 生成示例数据:带有季节性和趋势的时间序列
np.random.seed(1024)
dates = pd.date_range('2023-01-01', periods=365)
data = np.linspace(10, 50, 365) + 10 * np.sin(np.linspace(0, 10 * np.pi, 365)) + np.random.randn(365) * 5# 创建DataFrame
df = pd.DataFrame({'ds': dates, 'y': data})# 拟合Prophet模型
model = Prophet(yearly_seasonality=True)
model.fit(df)# 预测未来30天
future = model.make_future_dataframe(periods=30)
forecast = model.predict(future)# 可视化
fig = model.plot(forecast)
plt.title('Prophet Model Demo')
plt.xlabel('Date')
plt.ylabel('Value')
plt.show()

在这里插入图片描述


四、参考学习

[1]facebook官方文档
[2]github文档
[3] Prophet快速入门
[4]十大时间序列模型最强总结(六)Prophet
[5]时间序列模型Prophet使用详细讲解
[6]在win10系统安装fbprophet模块操作方式

相关文章:

Prophet时间序列算法总结及python实现案例

目录 一、prophet理论总结二、python导入模块方式三、python实现案例3.1帮助信息3.2 案例 四、参考学习 一、prophet理论总结 prophet模型是facebook开源的一个时间序列预测算法。[1][2],该算法主要为处理具有周期性、趋势变化以及缺失值和异常值的时间序列数据而设…...

远程调用 rpc 、 open feign

在学习黑马 springcloud 视频的时候,看到 open feign 使用, 就是 http 封装。 spring框架三部曲,导入依赖,加配置,使用api。...

Redis的几种持久化方式

Redis 提供了两种主要的持久化方式,它们分别是: 1. RDB(Redis Database Snapshotting) RDB 是 Redis 的一种数据持久化方式,它会在指定的时间间隔内对 Redis 中的数据进行快照并保存到硬盘上。 特点: 触…...

论文笔记(五十九)A survey of robot manipulation in contact

A survey of robot manipulation in contact 文章概括摘要1. 引言解释柔顺性控制的概念:应用实例: 2. 需要接触操控的任务2.1 环境塑造2.2 工件对齐2.3 关节运动2.4 双臂接触操控 3. 接触操控中的控制3.1 力控制3.2 阻抗控制3.3 顺应控制 4. 接触操控中的…...

c#控制台程序26-30

26.寻找并输出11至999之间的数m,它满足m,m2和m3均为回文数。所谓回文数是指其各位数字左右对称的整数,例如121,676,94249等。满足上述条件的数如m11,m2121,m31331皆为回文数。请编制函数实现此功能,如果是回文数&#…...

环形链表系列导学

问题描述 给定一个单链表,可能存在一个环。我们的目标是找到环的入口节点,即从这个节点开始,链表进入循环。如果没有环,则返回 null。 将链表问题转化为数学问题 状态序列与循环 我们可以将链表节点视为状态,每个节点的 next 指针代表状态转移函数 f f f。从头节点开始,我…...

IDEA2024创建一个spingboot项目

以下是创建一个基本的 Spring Boot 项目的步骤和示例: 初始化一个springboot工程其实有许多方法,笔者这里挑了一个最快捷的方式搭建一个项目。我们直接通过官方平台(start.spring.io)进行配置,然后下载压缩包就可以获取…...

Nginx:ssl

目录 部署ssl前提 nginx部署ssl证书 部署ssl部署建议 部署ssl前提 网站有域名根据域名申请到ssl证书,并下载证书部署到nginx中 部署了ssl证书后,访问的流量是加密的。 nginx部署ssl证书 #80端口跳转到443 server {listen 80;return 302 https://1…...

QT配置文件详解

TEMPLATElib TEMPLATE变量用于指定项目模板类型,其值可以是以下几种: app:建立一个应用程序的makefile,这是默认值。lib:建立一个库的makefile。vcapp:建立一个应用程序的Visual Studio项目文件。vclib&a…...

根据合约地址判断合约协议的方法

判断合约协议之前,需要了解一下什么是ERC165协议: ERC165 是以太坊中用于标准化接口检测的协议,由 Fabian Vogelsteller 在 2018 年创建 ,其核心内容主要包括以下方面: 接口定义 单一函数接口:ERC165 协议…...

联想YOGA Pro 14s至尊版电脑找不到独立显卡(N卡)问题,也无法安装驱动的问题

问题描述 电脑是联想YOGA Pro 14s至尊版,电脑上装的独立显卡是4060,一直是能够使用独立显卡的。然而有两次突然就找不到显卡了,NVIDIA CONTROL PANEL也消失了,而且也无法安装驱动。具体表现如下: 无法连接外接显示器…...

Spring Web开发注解和请求(1)

大家好我是小帅,今天我们来学习Spring Web MVC框架(入门级) 文章目录 1. 什么是 Spring Web MVC?1.1 MVC 定义1.2 什么是Spring MVC ? 2. 学习Spring MVC2.1 建⽴连接第一个spring MVC程序 3. web开发注解的解释3.1RestControlle…...

Supervisor使用教程

文章目录 [toc] Supervisor使用教程平台要求 安装supervisor本文测试的时候是使用Linux的yum安装的(其它方式未做测试)加入系统守护进行 Supervisor使用教程 在项目中,经常有脚本需要常驻运行的需求。以PHP脚本为例,最简单的方式…...

Spark基本命令详解

文章目录 Spark基本命令详解一、引言二、Spark Core 基本命令1、Transformations(转换操作)1.1、groupBy(func)1.2、filter(func) 2、Actions(动作操作)2.1、distinct([numTasks])2.2、sortBy(func, [ascending], [numTasks]) 三、…...

Three.js 相机视角的平滑过渡与点击模型切换视角

在 Three.js 中,实现相机视角的平滑过渡和点击模型切换到查看模型视角是一个常见且有用的功能。这种效果不仅能提升用户体验,还能为场景互动添加更多的动态元素。 1. 基本设置 首先,我们需要创建一个基本的 Three.js 场景,包括相…...

jenken 打包linux包遇到的问题(环境变量)

环境变量问题 我们jenkens 打包的时候 远程打包 通过ssh 去在服务器上调用脚本 环境变量没有去自动加载 代码打包的时候总是提示相关的so文件找不到 解决方案在 相关程序的make之前 把环境变量加在前面 我这里直接将变量加载代码的最前面...

使用 Go 语言中的 Context 取消协程执行

使用 Go 语言中的 Context 取消协程执行 在 Go 语言中,协程(goroutine)是一种轻量级的线程,非常适合处理并发任务。然而,如何优雅地取消正在运行的协程是一个常见的问题。本文将通过一个具体的例子来展示如何使用 con…...

python图像彩色数字化

效果展示&#xff1a; 目录结构&#xff1a; alphabets.py GENERAL {"simple": "%#*-:. ","complex": "$B%8&WM#*oahkbdpqwmZO0QLCJUYXzcvunxrjft/\|()1{}[]?-_~<>i!lI;:,\"^. " } # Full list could be found here…...

cesium 3dtile ClippingPlanes 多边形挖洞ClippingPlaneCollection

原理就是3dtiles里面的属性clippingPlanes 采用ClippingPlaneCollection&#xff0c;构成多边形来挖洞。 其次就是xyz法向量挖洞 clippingPlanes: new this.ffCesium.Cesium.ClippingPlaneCollection({unionClippingRegions: true, // true 表示多个切割面能合并为一个有效的…...

docker 僵尸进程问题

docker僵尸进程 子进程结束后&#xff0c;父进程没有回收该进程资源&#xff08;父进程可能没有wait&#xff09;&#xff0c;子进程残留资源存放与内核中&#xff0c;就变为僵尸进程(zombie) 场景分析&#xff1a;python脚本A中执行B应用&#xff0c;将A部署在docker中&#…...

微软要求 Windows Insider 用户试用备受争议的召回功能

拥有搭载 Qualcomm Snapdragon 处理器的 Copilot PC 的 Windows Insider 计划参与者现在可以试用 Recall&#xff0c;这是一项臭名昭著的快照拍摄 AI 功能&#xff0c;在今年早些时候推出时受到了很多批评。 Windows 营销高级总监 Melissa Grant 上周表示&#xff1a;“我们听…...

husky,commit规范,生成CHANGELOG.md,npm发版

项目git提交工程化&#xff08;钩子&#xff0c;提交信息commit message&#xff09;&#xff0c;npm修改版本&#xff0c;需要涉及到的包&#xff1a; husky&#xff0c;允许在git钩子中执行不同的脚步&#xff0c;如commitlint&#xff0c;eslint&#xff0c;prettier&#…...

DETR:一种新颖的端到端目标检测与分割框架

DETR&#xff1a;一种新颖的端到端目标检测与分割框架 摘要&#xff1a; 随着深度学习技术的发展&#xff0c;目标检测和图像分割任务取得了显著的进步。然而&#xff0c;传统的基于区域提名的方法在处理这些问题时存在一定的局限性。为此&#xff0c;Facebook AI Research&am…...

前端js面试知识点思维导图(脑图)

如果看着不清晰可以去https://download.csdn.net/download/m0_73761441/90058523访问下载&#xff0c;无需积分 使用百度脑图制作&#xff0c;可以一键导入下面的文本生成自己的脑图 js相关面试题、知识点 数据类型 1. 数据类型分类&#xff1f;分别包含&#xff…...

【Java基础入门篇】一、变量、数据类型和运算符

Java基础入门篇 一、变量、数据类型和运算符 1.1 变量 计算机中的数据表示方式是&#xff1a;“二进制(0/1)”&#xff0c;但是同时也可以兼容其他进制&#xff0c;例如八进制、十进制、十六进制等。 Java变量的本质是&#xff1a;存储在固定空间的内容&#xff0c;变量名是…...

【llamafactory】安装与环境配置

拉取镜像 git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory创建虚拟环境 conda create -n llamafactory python3.10 conda activate llamafactory安装所需依赖 pip install -e ".[torch,vllm,optimum,auto_gptq]"...

Vue 3 + Vuex 埋点实现指南

在现代前端开发中&#xff0c;数据分析和用户行为追踪是不可或缺的部分。本文将介绍如何在 Vue 3 项目中实现埋点功能&#xff0c;具体使用 Vuex 进行状态管理&#xff0c;并通过自定义 Hook 实现埋点逻辑。 目录 项目结构实现埋点逻辑使用埋点功能总结 1.项目结构 我们将创…...

电子应用设计方案-30:智能扫地机器人系统方案设计

智能扫地机器人系统方案设计 一、引言 随着人们生活节奏的加快和对生活品质的追求&#xff0c;智能家居产品越来越受到消费者的青睐。智能扫地机器人作为一种能够自动清扫地面的智能设备&#xff0c;为人们节省了大量的时间和精力。本方案旨在设计一款功能强大、智能化程度高、…...

HTML飞舞的爱心(完整代码)

写在前面 HTML语言实现飞舞的爱心完整代码。 完整代码 <!DOCTYPE html> <html lang="en"><head><meta charset="UTF-8"><title>飞舞爱心</title><style>* {margin: 0;padding: 0;}html,body {overflow: hidd…...

android shader gl_Position是几个分量

在Android的OpenGL ES中&#xff0c;gl_Position是顶点着色器&#xff08;Vertex Shader&#xff09;的一个内置输出变量&#xff0c;它用于指定顶点在裁剪空间&#xff08;Clip Space&#xff09;中的位置。gl_Position是一个四维向量&#xff08;4-component vector&#xff…...

宁夏建设网站公司/免费培训机构

如果你遇到同事编写的难以阅读的代码会怎么处理&#xff1f;反正我是遇到过。这些代码很难维护&#xff0c;还会影响开发进度。而如果对相关源码了解透彻&#xff0c;就可以快速定位到问题。最近一直在研究MyBatis源码&#xff0c;作为国内经常使用的持久层框架&#xff0c;其内…...

做会计要看什么关注什么网站/网站seo优化总结

3172: [Tjoi2013]单词 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4293 Solved: 2083[Submit][Status][Discuss]Description 某人读论文&#xff0c;一篇论文是由许多单词组成。但他发现一个单词会在论文中出现很多次&#xff0c;现在想知道每个单词分别在论文中出现多…...

建设银行上海黄浦支行网站/应用关键词优化

本文介绍如何搭建四节点的Oracle Linux 7集群以及oozie的High Availability。环境如下图&#xff1a;一、创建HA集群1、安装集群软件包分别在4个节点上安装&#xff0c;如下&#xff1a; [roothdp01 ~]# yum install pcs fence-agents-all -y [roothdp02 ~]# yum install pcs…...

深圳做网站优化工资多少/百度助手下载安装

Window对象 Window对象是客户端JavaScript程序的全局对象。 计时器 setTimeout() 和 setInterval() 可以用来注册在指定的时间之后单词或重复调用的函数。 Window对象的setTimeout()方法用来实现一个函数在指定的毫秒之后运行。setTimeout()返回一个值&#xff0c;这个值可以…...

推荐微网站建设/企业网络策划

工厂模式 Spring IOC就是使用了工厂模式&#xff0c;对象的创建交给一个工厂去创建。 概念&#xff1a;工厂模式&#xff08;Factory Pattern&#xff09;使用一个共同的接口指向新创建的对象。 意图&#xff1a;定义一个创建对象的接口&#xff0c;让其子类自己决定实例化哪…...

泉州模板建站平台/优化网站建设

标签&#xff08;空格分隔&#xff09;&#xff1a; 三省吾身 原文地址&#xff1a;你应当怎样学习C(以及编程) 本人反思自己这些年在学校学得稀里糊涂半灌水。看到这篇文章&#xff0c;感觉收获不少。仿佛有指明自己道路的感觉&#xff0c;当然真正困难的还是坚持学习&#xf…...