ORB-SLAM2 ----- LocalMapping::SearchInNeighbors()
文章目录
- 一、函数意义
- 二、函数讲解
- 三、函数代码
- 四、本函数使用的匹配方法ORBmatcher::Fuse()
- 1. 函数讲解
- 2. 函数代码
- 四、总结
一、函数意义
本函数是用于地图点融合的函数,前面的函数生成了新的地图点,但这些地图点可能在前面的关键帧中已经生成过了,这时候就需要判断是否重复生成,如果重复生成就只保留最观测观测次数最多的那一个关键帧的地图点(地图点融合)。
二、函数讲解
想要融合地图点们就要找出那些关键帧,与当前关键帧有共视关系。本函数使用的方法是,找出与当前关键帧公式关系最好的10个关键帧(单目为20个)作为一级共视关键帧,然后找出一级共视关键帧共视关系最好的5个关键帧作为二级共视关键帧。接下来的融合将从一级和二级共视关键帧进行。本函数为了保证融合的完全性和正确性,采用了正反两次融合,第一次将当前关键帧的点投影到共视关键帧中,寻求匹配和融合。第二次将共视关键帧中的地图点投影到当前关键帧中,寻求匹配和融合。这两次特征匹配使用的方法都是,半径搜索法,相对于词袋匹配的方法,此方法是精匹配。
三、函数代码
// 检查并融合当前关键帧与相邻帧(两级相邻)重复的地图点
void LocalMapping::SearchInNeighbors()
{// Retrieve neighbor keyframes// 单目情况要20个邻接关键帧,双目或者RGBD则要10个int nn = 10;if(mbMonocular)nn=20;// 获取与该关键帧连接的前N个最强共视关键帧(已按权值排序)const vector<KeyFrame*> vpNeighKFs = mpCurrentKeyFrame->GetBestCovisibilityKeyFrames(nn);// 存储一级相邻关键帧及其二级相邻关键帧vector<KeyFrame*> vpTargetKFs;// 遍历这些共视的关键帧for(vector<KeyFrame*>::const_iterator vit=vpNeighKFs.begin(), vend=vpNeighKFs.end(); vit!=vend; vit++){// 获取关键帧的指针KeyFrame* pKFi = *vit;// 排除坏点和已经融合的点if(pKFi->isBad() || pKFi->mnFuseTargetForKF == mpCurrentKeyFrame->mnId)continue;// 获取一级相邻关键帧vpTargetKFs.push_back(pKFi);// 获取索引pKFi->mnFuseTargetForKF = mpCurrentKeyFrame->mnId;// Extend to some second neighbors// 以一级相邻关键帧的共视关系最好的5个相邻关键帧 作为二级相邻关键帧const vector<KeyFrame*> vpSecondNeighKFs = pKFi->GetBestCovisibilityKeyFrames(5);// 同样的操作,获取二级相邻关键帧for(vector<KeyFrame*>::const_iterator vit2=vpSecondNeighKFs.begin(), vend2=vpSecondNeighKFs.end(); vit2!=vend2; vit2++){KeyFrame* pKFi2 = *vit2;if(pKFi2->isBad() || pKFi2->mnFuseTargetForKF==mpCurrentKeyFrame->mnId || pKFi2->mnId==mpCurrentKeyFrame->mnId)continue;vpTargetKFs.push_back(pKFi2);}}// Search matches by projection from current KF in target KFs// 将当前帧的地图点分别投影到两级相邻关键帧,寻找匹配点对应的地图点进行融合,称为正向投影融合// 初始化特征匹配器ORBmatcher matcher;// 获取当前帧匹配的地图点vector<MapPoint*> vpMapPointMatches = mpCurrentKeyFrame->GetMapPointMatches();// 遍历一级和二级的相邻关键帧,融合地图点for(vector<KeyFrame*>::iterator vit=vpTargetKFs.begin(), vend=vpTargetKFs.end(); vit!=vend; vit++){// 获取关键帧的指针KeyFrame* pKFi = *vit;// 将地图点投影到关键帧中进行匹配和融合;融合策略如下// 1.如果地图点能匹配关键帧的特征点,并且该点有对应的地图点,那么选择观测数目多的替换两个地图点// 2.如果地图点能匹配关键帧的特征点,并且该点没有对应的地图点,那么为该点添加该投影地图点// 注意这个时候对地图点融合的操作是立即生效的 matcher.Fuse(pKFi,vpMapPointMatches);}// Search matches by projection from target KFs in current KF// 反向匹配vector<MapPoint*> vpFuseCandidates;vpFuseCandidates.reserve(vpTargetKFs.size()*vpMapPointMatches.size());// 遍历一级和二级的相邻关键帧,// 查找当前关键帧中的候选地图点,查看它们是否与相邻关键帧中已存在的地图点匹配。// 如果匹配,则将它们加入到待融合的候选列表 vpFuseCandidates 中for(vector<KeyFrame*>::iterator vitKF=vpTargetKFs.begin(), vendKF=vpTargetKFs.end(); vitKF!=vendKF; vitKF++){// 获取指针KeyFrame* pKFi = *vitKF;// 获取匹配的地图点vector<MapPoint*> vpMapPointsKFi = pKFi->GetMapPointMatches();// 遍历这些地图点for(vector<MapPoint*>::iterator vitMP=vpMapPointsKFi.begin(), vendMP=vpMapPointsKFi.end(); vitMP!=vendMP; vitMP++){ // 获取指针MapPoint* pMP = *vitMP;// 排除不合格的点if(!pMP)continue;if(pMP->isBad() || pMP->mnFuseCandidateForKF == mpCurrentKeyFrame->mnId)continue;// 获取索引pMP->mnFuseCandidateForKF = mpCurrentKeyFrame->mnId;// 将它们加入到待融合的候选列表 vpFuseCandidates 中vpFuseCandidates.push_back(pMP);}}// 进一步融合matcher.Fuse(mpCurrentKeyFrame,vpFuseCandidates);// Update points// 获取本关键帧的地图点vpMapPointMatches = mpCurrentKeyFrame->GetMapPointMatches();// 遍历这些地图点for(size_t i=0, iend=vpMapPointMatches.size(); i<iend; i++){MapPoint* pMP=vpMapPointMatches[i];if(pMP){if(!pMP->isBad()){// 计算该地图点最具代表性的描述子pMP->ComputeDistinctiveDescriptors();// 获取其深度和法向量pMP->UpdateNormalAndDepth();}}}// Update connections in covisibility graph// 更新连接关系mpCurrentKeyFrame->UpdateConnections();
}
四、本函数使用的匹配方法ORBmatcher::Fuse()
1. 函数讲解
ORBmatcher::Fuse()函数是这个函数中调用的特征匹配的方法,本函数是一个有返回值的函数,返回值为匹配融合成功的地图点的个数。注意到函数中有两层for循环,这两个函数构成了函数的主题,第一层是遍历候选的地图点(这些地图点来源于主函数筛选出来的,准备融合的地图点),第二层是将地图点投影到别的帧,获取那个帧以该投影点为中心,以r为半径的圆内的点,找出这些点中最匹配的那个点,作为匹配成功的点,但如果最匹配的点也超出了阈值,就判定为该地图点匹配失败。匹配成功后筛选不合格的点,然后为最终融合成功的点增加观测。该函数的融合原则为如果地图点能匹配关键帧的特征点,并且该点有对应的地图点,那么选择观测数目多的替换两个地图点,如果地图点能匹配关键帧的特征点,并且该点没有对应的地图点,那么为该点添加该投影地图点。正反两次特征匹配使用的相同函数,只是函数的参数不同,即投影的方向不同。
2. 函数代码
/*** @brief 将地图点投影到关键帧中进行匹配和融合* @param[in] pKF 关键帧* @param[in] vpMapPoints 待投影的地图点* @param[in] th 搜索窗口的阈值,默认为3* @return int 更新地图点的数量*/
int ORBmatcher::Fuse(KeyFrame *pKF, const vector<MapPoint *> &vpMapPoints, const float th)
{// 获取相邻关键帧的旋转矩阵和平移矩阵cv::Mat Rcw = pKF->GetRotation();cv::Mat tcw = pKF->GetTranslation();// 获取相机内参const float &fx = pKF->fx;const float &fy = pKF->fy;const float &cx = pKF->cx;const float &cy = pKF->cy;const float &bf = pKF->mbf;// 获取相邻关键帧的相机中心(相机的世界坐标)cv::Mat Ow = pKF->GetCameraCenter();// 用于计数已成功融合的地图点数量int nFused=0;// 获取待融合的地图点的数量const int nMPs = vpMapPoints.size();// 遍历待融合的地图点for(int i=0; i<nMPs; i++){// 获取地图点指针MapPoint* pMP = vpMapPoints[i];// 排除不符合规定的点if(!pMP)continue;if(pMP->isBad() || pMP->IsInKeyFrame(pKF))continue;// 将地图点坐标从世界坐标系转到相机坐标系cv::Mat p3Dw = pMP->GetWorldPos();cv::Mat p3Dc = Rcw*p3Dw + tcw;// Depth must be positive// 排除深度为负的地图点if(p3Dc.at<float>(2)<0.0f)continue;// 计算图像坐标const float invz = 1/p3Dc.at<float>(2);const float x = p3Dc.at<float>(0)*invz;const float y = p3Dc.at<float>(1)*invz;const float u = fx*x+cx;const float v = fy*y+cy;// Point must be inside the image// 检查点是否在图像内if(!pKF->IsInImage(u,v))continue;// 计算右目坐标const float ur = u-bf*invz;// 获取地图点的最大和最小距离const float maxDistance = pMP->GetMaxDistanceInvariance();const float minDistance = pMP->GetMinDistanceInvariance();// 计算地图点与相机中心的距离cv::Mat PO = p3Dw-Ow;const float dist3D = cv::norm(PO);// Depth must be inside the scale pyramid of the image// 检查距离是否在有效范围内if(dist3D<minDistance || dist3D>maxDistance )continue;// Viewing angle must be less than 60 deg// 获取地图点的法向量cv::Mat Pn = pMP->GetNormal();// 检查视角条件if(PO.dot(Pn)<0.5*dist3D)continue;// 预测金字塔层级并查找特征点int nPredictedLevel = pMP->PredictScale(dist3D,pKF);// Search in a radius// 设置搜索半径const float radius = th*pKF->mvScaleFactors[nPredictedLevel];// 获取以该特征点为中心,以radius为半径搜索获取特征点const vector<size_t> vIndices = pKF->GetFeaturesInArea(u,v,radius);// 没有获取到点就返回if(vIndices.empty())continue;// Match to the most similar keypoint in the radius// 获取描述子const cv::Mat dMP = pMP->GetDescriptor();// 初始化最佳距离和索引int bestDist = 256;int bestIdx = -1;// 遍历这些点for(vector<size_t>::const_iterator vit=vIndices.begin(), vend=vIndices.end(); vit!=vend; vit++){// 获取指针const size_t idx = *vit;// 获取去畸变后的坐标const cv::KeyPoint &kp = pKF->mvKeysUn[idx];// 获取当前金字塔层级const int &kpLevel= kp.octave;// 该点层级大于预测层级或小于两个层级,就返回if(kpLevel<nPredictedLevel-1 || kpLevel>nPredictedLevel)continue;// 索引大于零则获取误差,误差超过阈值就返回if(pKF->mvuRight[idx]>=0){// Check reprojection error in stereoconst float &kpx = kp.pt.x;const float &kpy = kp.pt.y;const float &kpr = pKF->mvuRight[idx];const float ex = u-kpx;const float ey = v-kpy;const float er = ur-kpr;const float e2 = ex*ex+ey*ey+er*er;if(e2*pKF->mvInvLevelSigma2[kpLevel]>7.8)continue;}else{const float &kpx = kp.pt.x;const float &kpy = kp.pt.y;const float ex = u-kpx;const float ey = v-kpy;const float e2 = ex*ex+ey*ey;// 第一个点的尺度为5.99if(e2*pKF->mvInvLevelSigma2[kpLevel]>5.99)continue;}// 获取该点的描述子const cv::Mat &dKF = pKF->mDescriptors.row(idx);// 获取该地图点与本关键帧最佳描述子之间的距离const int dist = DescriptorDistance(dMP,dKF);// 更新最佳距离if(dist<bestDist){bestDist = dist;bestIdx = idx;}}// If there is already a MapPoint replace otherwise add new measurement// 判断最佳距离是否在阈值内if(bestDist<=TH_LOW){// 获取拥有最佳匹配距离的地图点的指针MapPoint* pMPinKF = pKF->GetMapPoint(bestIdx);// 排除不合格的点if(pMPinKF){if(!pMPinKF->isBad()){// 获取观测数量更多的那个点,作为融合后的地图点if(pMPinKF->Observations()>pMP->Observations())pMP->Replace(pMPinKF);elsepMPinKF->Replace(pMP);}}// 如果不存在地图点,则将新的观察数据添加到地图点和关键帧中else{pMP->AddObservation(pKF,bestIdx);pKF->AddMapPoint(pMP,bestIdx);}// 增加成功融合计数 nFusednFused++;}}return nFused;
}
四、总结
本函数是为创早的新地图点服务的函数,目的是减少重复的地图点数量,同时优化地图点的坐标(选择观测最多的那个帧对应的地图点保留,本身就是一种优化),我们可以看到,进入到局部见图线程以后,不再使用普通真,而全部使用关键帧,这是因为关键帧是经过筛选的,相对一一般的帧更好,而且这样做的好处还有减少计算量,只用关键帧,可以大大减少匹配次数和难度,在优化时作用更加明显,显著提高效。
相关文章:
ORB-SLAM2 ----- LocalMapping::SearchInNeighbors()
文章目录 一、函数意义二、函数讲解三、函数代码四、本函数使用的匹配方法ORBmatcher::Fuse()1. 函数讲解2. 函数代码 四、总结 一、函数意义 本函数是用于地图点融合的函数,前面的函数生成了新的地图点,但这些地图点可能在前面的关键帧中已经生成过了&a…...
给UE5优化一丢丢编辑器性能
背后的原理 先看FActorIterator的定义 /*** Actor iterator* Note that when Playing In Editor, this will find actors only in CurrentWorld*/ class FActorIterator : public TActorIteratorBase<FActorIterator> {//..... }找到基类TActorIteratorBase /*** Temp…...
【Docker】常用命令汇总
Docker 是1个开源的应用容器引擎,基于Go 语言并遵从 Apache2.0 协议开源。 可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。 容器是完全使用沙箱机制,相…...
Mybatis:CRUD数据操作之多条件查询及动态SQL
Mybatis基础环境准备请看:Mybatis基础环境准备 本篇讲解Mybati数据CRUD数据操作之多条件查询 1,编写接口方法 在 com.itheima.mapper 包写创建名为 BrandMapper 的接口。在 BrandMapper 接口中定义多条件查询的方法。 而该功能有三个参数,…...
【笔记】轻型民用无人驾驶航空器安全操控
《轻型民用无人驾驶航空器安全操控》 理论考试培训材料 法规部分 【民用无人驾驶航空器的分类】 1、如何定义微型、轻型无人驾驶航空器? 微型无人驾驶航空器,是指空机重量小于0.25千克,最大平飞速度不超过40千米/小时,无线电发…...
TouchGFX设计模式代码实例说明
一)Model - View - Presenter (MVP) 模式在 TouchGFX 中的应用 1)Model(模型): 模型代表应用程序的数据和业务逻辑。例如,在一个简单的计数器应用中,模型可以是一个包含计数器当前值的类。 class CounterModel { pri…...
flink学习(7)——window
概述 窗口的长度(大小): 决定了要计算最近多长时间的数据 窗口的间隔: 决定了每隔多久计算一次 举例:每隔10min,计算最近24h的热搜词,24小时是长度,每隔10分钟是间隔。 窗口的分类 1、根据window前是否调用keyBy分为键控窗口和非键控窗口…...
restTemplate get请求
报错解释: 这个报错信息表明在使用RestTemplate进行GET请求时,需要提供一个请求类型(reqType),但是传入的值为空。这通常意味着在构建请求或者调用方法时,没有正确设置请求的Content-Type头部,…...
ffmpeg 预设的值 加速
centos 安装ffmpeg 编译安装 官网获取最新的linux ffmpeg 代码 https://ffmpeg.org//releases/ mkdir -p /data/app/ffmpeg cd /data/app/ffmpeg wget http://www.ffmpeg.org/releases/ffmpeg-7.1.tar.gz tar -zxvf ffmpeg-7.1.tar.gz#安装所需的编译环境 yum install -y \…...
maven <scope>compile</scope>作用
在 Maven 项目中, 元素用于定义依赖项的作用范围。 元素可以有多个值,每个值表示不同的作用范围。其中,scope compile scope 是默认的作用范围,表示该依赖项在编译、测试和运行时都需要。 scope compile scope 的含义 1、编译时…...
Ubuntu Server 22.04.5 从零到一:详尽安装部署指南
文章目录 Ubuntu Server 22.04.5 从零到一:详尽安装部署指南一、部署环境二、安装系统2.1 安装2.1.1 选择安装方式2.1.2 选择语言2.1.3 选择不更新2.1.4 选择键盘标准2.1.5 选择安装版本2.1.6 设置网卡2.1.7 配置代理2.1.8 设置镜像源2.1.9 选择装系统的硬盘2.1.10 …...
反射机制了解
反射概念 了解反射背景 存在某些变量或形参的声明类型是Object类型,但是程序却需要调用该对象运行时类型的方法,该方法不是Object中的方法,如何解决。转到如何获取该对象运行时类型的方法。 只能运行时才能获取,这就用到反射。 …...
机器学习策略Ⅰ
机器学习策略Ⅰ 在构建一个好的监督学习系统时,通常需要确保以下四个方面: 系统需要在训练集上能够很好地拟合数据,达到某种可接受的性能水平(如接近人类水平)。如果训练集表现不好,可以使用更大的模型&…...
redis中的bigkey及读取优化
一、bigKey介绍 1、简介 在 Redis 中,Big Key(大键)指的是占用大量内存的单个键。通常,Redis 是一个高性能的内存数据库,但是当某些键变得非常大时,会带来性能上的影响。例如,大量的内存消耗、长时间的操作延迟,甚至可能导致 Redis 停止响应或崩溃。 通俗的来说,指…...
【西瓜书】支持向量机(SVM)
支持向量机(Support Vector Machine,简称SVM)。 超平面 分类学习最基本的想法就是基于训练集合D在样本空间中找到一个划分超平面,将不同类别的样本分开。 但能将训练样本分开的划分超平面可能有很多,应该努力去找到哪…...
三维渲染中顺序无关的半透明混合(OIT)(二——Stencil Route)
1、A-Buffer算法。 在谈到Stencil Route之前,需要先讨论A-Buffer算法。A-Buffer是一种图形学(渲染方向)上的用于可见面分析(Visble Surface Detection)的技术,是Z-Buffer的衍生方法。 Z-Buffer是用于剔除 不透明 物体的算法。假…...
(SAST检测规则-3)固定的 SessionID 缺陷详解
漏洞类型: 会话固定攻击(Session Fixation Attack) 漏洞描述: 会话固定攻击是利用服务器的会话管理机制存在漏洞,攻击者通过提前控制或预测用户的会话标识符(Session ID),当用户登录…...
【安卓开发】【Android Studio】项目构建(Build)时报错:Integer Overflow
一、问题描述 在安卓项目中,构建(Build)失败并报错:xxxxx Integer Overflow(整型溢出)。 二、相关代码 刚开始以为是某个整数(例如控件、java类)不匹配造成的,检查如下…...
STM32主要功能
STM32 是由意法半导体(STMicroelectronics)推出的一系列基于 ARM Cortex-M 内核的微控制器(MCU)。STM32 微控制器广泛应用于嵌入式系统中,因其高性能、低功耗、丰富的外设接口和多种封装形式而被广泛采用。其主要功能和…...
MacOS 如何连接 Linux NFS 服务器
以 Ubuntu 为例。 Ubuntu 服务器端设置 1. 进入 root 权限,安装 NFS 服务: apt-get update apt-get install nfs-kernel-server2. 创建共享目录: mkdir /data chown nobody:nogroup /data chmod 777 /data3. 配置 /etc/exports 文件: vi …...
【英特尔IA-32架构软件开发者开发手册第3卷:系统编程指南】2001年版翻译,2-39
文件下载与邀请翻译者 学习英特尔开发手册,最好手里这个手册文件。原版是PDF文件。点击下方链接了解下载方法。 讲解下载英特尔开发手册的文章 翻译英特尔开发手册,会是一件耗时费力的工作。如果有愿意和我一起来做这件事的,那么ÿ…...
摄影相关常用名词
本文介绍与摄影相关的常用名词。 曝光 Exposure 感光元件接收光线的过程,决定图像的明暗程度和细节表现。 光圈 Aperture 控制镜头进光量的孔径大小,用 F 值(f-stop) 表示。 光圈越大(F 值越小),…...
02.06、回文链表
02.06、[简单] 回文链表 1、题目描述 编写一个函数,检查输入的链表是否是回文的。 2、解题思路: 快慢指针找中点: 利用快慢指针的技巧来找到链表的中间节点。慢指针 slow 每次移动一步,而快指针 fast 每次移动两步。这样&…...
Shell脚本小练习
学习了这么长时间Shell脚本,总得来一次小小的练习吧,那么请看下文! 1.用Shell写一个小计算器。 通过read命令获取用户输入的表达式,表达式的格式设定为操作数1 运算符 操作数2,例如53,然后利用设计的脚本…...
四轮转向轮式里程计设计(python)
目录 写在前面的话参考教程官方教程参考代码(c) 关键代码解析订阅车轮速度订阅车轮转向订阅四轮转向控制模式积累速度和转向角发布里程计 完整代码完整视频演示 写在前面的话 上一篇博客:键盘控制车子四轮转向 这篇文章通过订阅车轮的速度和…...
多方法做配对样本t检验(三)
Wilcoxon符号秩检验 Wilcoxon符号秩检验(Wilcoxon Signed-Rank Test) 是一种非参数统计方法,用于检验两组相关样本(配对样本)之间的差异是否显著。它通常用来代替配对样本t检验,特别是在数据不符合正态分布…...
Vue 将推出「无虚拟DOM」版本,又是新的前端框架趋势?
文章目录 背景无虚拟DOM版的Vue3Vue Vapor 在线演练题外话:渲染流程 背景 随着 React 和 Vue 这些前端框架的爆火,他们的渲染方式,虚拟DOM,也跟着火了起来,大家都认为这是一种高性能批量更新DOM的方式但是近一两年有不…...
阿里云ECS服务器磁盘空间不足的几个文件
查看磁盘空间命令: df -h /mnt 清零 echo >nohup.out 磁盘空间不足的文件列表: 一、nohup.out:来自"nohup java -jar service.jar &"命令产生的文件,位置在服务jar所在目录 二、access.log:位于…...
从0开始linux(38)——线程(1)线程概念
欢迎来到博主专栏:从0开始linux 博主ID:代码小豪 文章目录 进程与线程线程概念线程的优点线程的独立数据 进程与线程 如果要理解线程,那么进程将会时绕不开的点。首先我们回顾一下我们之前在进程章节当中是如何描述进程的? 进程&…...
Ubuntu源码安装gitlab13.7集群多前端《二》
Ubuntu源码安装gitlab13.7《一》 gitaly需要调整的服务 redis socket->ipbind ....* # 0.0.0.0pg vim /etc/postgresql/14/main/pg_hba.confhost all all ..../32 md5gitaly vim /home/git/gitaly/config.tomlbin_dir "/home/gi…...
陕西省住房城乡建设部门户网站/外包公司什么意思
缓存区溢出漏洞工具DoonaDoona是缓存区溢出漏洞工具BED的分支。它在BED的基础上,增加了更多插件,如nttp、proxy、rtsp、tftp等。同时,它对各个插件扩充了攻击载荷,这里也称为模糊用例(fuzz case)࿰…...
德阳网站制作/seo建设招商
圈套模式之投资 在触发器篇,我们讨论了内部触发器的重要性。通过外部触发器产品设计者可以引诱用户做出下一步行动。在行动篇,我们知道用户的一小步行动都是想立即实现潜在的期望。在奖励篇,我们知道不确定的奖励会使用户不断来使用产品。 投…...
wordpress模块管理系统/在线制作网站免费
10月25日,“电子信息系AAA软件特色专业java知识竞赛”在实验楼二楼阶梯教室圆满落下帷幕,我系合作办学AAA特色专业2015级四个班级近200名学生参加了本次活动。AAA教育新乡基地负责人郎建辉、辅导员刘瑞姣、教员王和超和康一等老师出席评选本次比赛&#…...
网站建设排行公司/seo优化平台
导读Dutree是Durep和Tree的组合。Durep用图表创建磁盘使用情况报告,这使我们能够确定哪些目录使用了最多的空间。尽管durep可以产生类似于du的文本输出,但其真正的功能是能够将报告存储在文件中。Tree是目录显示程序,它以树状结构在终端上递归…...
建设购物网站需要多少费用/企业全网推广公司
MySQL 保存 Boolean 值时,用 1 代表 TRUE,0 代表 FALSE;类似一个 bit 位,默认没有数据,即为 0,也即 Faslse MySQL 存储 Boolean 值的类型为 tinyint(1) 类型;MySQL 中有 true、false、TRUE、FAL…...
卖高仿名牌手表网站/国内看不到的中文新闻网站
链接: https://uva.onlinejudge.org/index.php?optioncom_onlinejudge&Itemid8&pageshow_problem&problem3371 题意: 可以用表达式树来表示一个表达式。在本题中,运算符均为二元的,且运算符和运算数均用1~…...