当前位置: 首页 > news >正文

2024 ccpc 辽宁省赛 E(构造 思维?)L(二分+一点点数论知识?)

E 题意:
在这里插入图片描述
可以注意到:
我的两种方格都四个方格的大小。
所以 如果存在一种摆放方式 那么 4|nm。
再考虑一种特殊的情况 2
2 ,此时虽然我的积是4 但是无法摆放的。

1>对于 4 | n,或者 4 | m.我直接摆放第二种方格就可以了。
如果我n 是4 的倍数,那么竖着摆放。如果m 是4 的倍数,那么横着摆。

2>对于我n m 都不是4 的倍数的情况。(因为4|nm ,并且我n m 都不是4的倍数。所以n m 都是偶数,(因为每一个数都要贡献出一个2 出来)
我们可以构造出来的最小单元是 2
6
1 2 2 2 2 3
1 1 1 3 3 3

当m>2的时候。我两行两行的考虑
m至少为6
将原矩阵分成2m 个矩形
当m 大于2 并且不是4的倍数。那么m=4
k+6
对分割好的矩形 可以分割成k个24 的矩形和一个2 6的矩形。

当我的m==2 的时候
1 1
1 2
1 2
3 2
3 3
那么我n =4*k+6
和上文类似

我的构思代码

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;void fun1(int x)
{cout << x << " " << x + 1 << " " << x + 1 << " " << x + 1 << " " << x + 1 << " " << x + 2 << " ";return;
}
void fun2(int x)
{cout << x << " " << x << " " << x << " " << x + 2 << " " << x + 2 << " " << x + 2 << " ";return;
}
void fun3(int x)
{cout<<x<<" "<<x<<"\n";cout<<x<<" "<<x+1<<"\n";cout<<x<<" "<<x+1<<"\n";cout<<x+2<<" "<<x+1<<"\n";cout<<x+2<<" "<<x+1<<"\n";cout<<x+2<<" "<<x+2<<"\n";return ;
}
void solve()
{int n, m;cin >> n >> m;if (n == 2 && m == 2){cout << "NO\n";return;}if ((n * m) % 4 != 0){cout << "NO\n";return;}cout << "YES\n";if (n % 4 == 0 || m % 4 == 0){int tot = 0;if (m % 4 == 0){for (int j = 1; j <= n; j++){for (int k = 1; k <= m; k++){if (k % 4 == 1)tot++;cout << tot << " ";}cout << "\n";}}else{int tot = 1;for (int k = 1; k <= n / 4; k++){for (int jj = 1; jj <= 4; jj++){for (int i = tot; i <= tot + m - 1; i++){cout << i << " ";}cout << "\n";}tot += m;}}return;}int tot = 1;if (m==2){int k=(n-6)/4;fun3(tot);tot+=3;for (int i=1;i<=k;i++){for (int k=1;k<=4;k++){cout<<tot<<" "<<tot+1<<"\n";}tot+=2;}return ;}int k = (m - 6) / 4;for (int i = 1; i <= n; i += 2){int t = tot;// 两行 两行处理fun1(t);tot += 3;// 多少个四for (int j = 1; j <= k; j++){for (int kk = 1; kk <= 4; kk++)cout << tot << " ";tot++;}cout << "\n";fun2(t);for (int j = 1; j <= k; j++){for (int kk = 1; kk <= 4; kk++)cout << tot << " ";tot++;}cout << "\n";}
}
int main()
{std::cin.tie(nullptr)->sync_with_stdio(false);int t = 1;cin >> t;while (t--){solve();}return 0;
}

L题意:
在这里插入图片描述

一直以为这是什么数论的题。
说到底还是不会枚举啊。读不懂题。真可恶 真可恶!!

1-x 中 是a 的倍数的数字有 x/a 个。(这里我其实是算的 我的x是a 的多少倍。若x/a=k。那么从1-x 中 存在着 a 2a …ka 一共k 个数)
(主要是对这 一句的理解)
n 是4*100^p 的倍数 但是我n 不是 100^{p+1} 的倍数
如果我确定了p.那么我可以用 mid/a-mid/b;
同时要减去1-2024 年的影响。

我的平年 和我的年份 具有单调性。(不降的)
所以我二分年份
因为我的平年至多是1e18 。所以我的p 取到 8 就可以了。4100^p 已经到达了41e16
当我的p 取9 的时候,是 4*1e18,那必然不会出现倍数了

void solve()
{int k;cin >> k;auto check = [&](int mid) -> bool{int ans = 0;for (int i = 0; i <= 8; i++){ans += mid / (4 * qpow(100, i)) - mid / (qpow(100, i + 1));}return (mid - 2024 - (ans - 491)) >= k;};int l = 2025;int r = 2e18;while (l <= r){int mid = l + r >> 1;if (check(mid))r = mid - 1;elsel = mid + 1;}cout << r + 1 << "\n";
}

相关文章:

2024 ccpc 辽宁省赛 E(构造 思维?)L(二分+一点点数论知识?)

E 题意&#xff1a; 可以注意到&#xff1a; 我的两种方格都四个方格的大小。 所以 如果存在一种摆放方式 那么 4|nm。 再考虑一种特殊的情况 22 &#xff0c;此时虽然我的积是4 但是无法摆放的。 1>对于 4 | n,或者 4 | m.我直接摆放第二种方格就可以了。 如果我n 是4 的…...

【iOS】设计模式的六大原则

【iOS】设计模式的六大原则 文章目录 【iOS】设计模式的六大原则前言开闭原则——OCP单一职能原则——SRP里氏替换原则——LSP依赖倒置原则——DLP接口隔离原则——ISP迪米特法则——LoD小结 前言 笔者这段时间看了一下有关于设计模式的七大原则&#xff0c;下面代码示例均为OC…...

网络安全:攻防技术-Google Hacking的实现及应用

前言 google hacking其实并算不上什么新东西&#xff0c;在早几年我在一些国外站点上就看见过相关的介绍&#xff0c;但是由于当时并没有重视这种技术&#xff0c;认为最多就只是用来找找未改名的mdb或者别人留下的webshell什么的&#xff0c;并无太大实际用途。但是前段时间仔…...

输入一行字符,分别统计出其中英文字母、空格、数字和其它字符的个数。-多语言

目录 C 语言实现 Python 实现 Java 实现 Js 实现 Ts 实现 题目&#xff1a;输入一行字符&#xff0c;分别统计出其中英文字母、空格、数字和其它字符的个数。 程序分析&#xff1a;利用while语句,条件为输入的字符不为\n。 C 语言实现 #include <stdio.h>int mai…...

2-2-18-9 QNX系统架构之文件系统(三)

阅读前言 本文以QNX系统官方的文档英文原版资料为参考&#xff0c;翻译和逐句校对后&#xff0c;对QNX操作系统的相关概念进行了深度整理&#xff0c;旨在帮助想要了解QNX的读者及开发者可以快速阅读&#xff0c;而不必查看晦涩难懂的英文原文&#xff0c;这些文章将会作为一个…...

各大浏览器(如Chrome、Firefox、Edge、Safari)的对比

浏览器如Chrome、Firefox、Edge等在功能、性能、隐私保护等方面各有特点。以下是对这些浏览器的详细对比&#xff0c;帮助你选择合适的浏览器。 1. Google Chrome 市场份额&#xff1a;Chrome是目前市场上最流行的浏览器&#xff0c;约占全球浏览器市场的65%以上。 性能&#…...

nginx搭建直播推流服务

文章目录 学习链接步骤使用nginx搭建直播推流服务安装依赖库下载nginx-http-flv-module模块下载nginx解压nginx&#xff0c;进入nginx目录设置nginx编译配置编译并安装配置nginx rtmp服务启动nginx 准备另外一台电脑下载OBS下载OBS windows | linux 安装vlc观看直播flv协议hls协…...

单片机-- 松瀚sonix学习过程

硬件&#xff1a;松瀚sn8f5701sg、SN-LINK 3 Adapter模拟器、sn-link转接板 软件&#xff1a; keil-c51&#xff08;v9.60&#xff09;&#xff1a;建立工程&#xff0c;编辑&#xff0c;烧录程序 SN-Link_Driver for Keil C51_V3.00.005&#xff1a;安装sonix设备包和snlin…...

循环神经网络:从基础到应用的深度解析

&#x1f35b;循环神经网络&#xff08;RNN&#xff09;概述 循环神经网络&#xff08;Recurrent Neural Network, RNN&#xff09;是一种能够处理时序数据或序列数据的深度学习模型。不同于传统的前馈神经网络&#xff0c;RNN具有内存单元&#xff0c;能够捕捉序列中前后信息…...

从扩散模型开始的生成模型范式演变--SDE

SDE是在分数生成模型的基础上&#xff0c;将加噪过程扩展时连续、无限状态&#xff0c;使得扩散模型的正向、逆向过程通过SDE表示。在前文讲解DDPM后&#xff0c;本文主要讲解SDE扩散模型原理。本文内容主要来自B站Up主deep_thoughts分享视频Score Diffusion Model分数扩散模型…...

【python使用kazoo连ZooKeeper基础使用】

from kazoo.client import KazooClient, KazooState from kazoo.exceptions import NoNodeError,NodeExistsError,NotEmptyError import json# 创建 KazooClient 实例&#xff0c;连接到 ZooKeeper 服务器 zk KazooClient(hosts127.0.0.1:2181) zk.start()# 定义节点路径 path…...

【设计模式系列】解释器模式(十七)

一、什么是解释器模式 解释器模式&#xff08;Interpreter Pattern&#xff09;是一种行为型设计模式&#xff0c;它的核心思想是分离实现与解释执行。它用于定义语言的文法规则&#xff0c;并解释执行语言中的表达式。这种模式通常是将每个表达式抽象成一个类&#xff0c;并通…...

只出现一次的数字

只出现一次的数字 给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算法只使用常量额外空间。 示例 1 &#xff…...

SpringMVC-08-json

8. Json 8.1. 什么是Json JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式&#xff0c;目前使用特别广泛。采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSON 成为理想的数据交换语言。易于人阅读和编写&#xf…...

技术文档的语言表达

技术文档的语言表达 在这个瞬息万变的技术世界中&#xff0c;了解如何撰写有效的技术文档显得尤为重要。无论是开发团队还是最终用户&#xff0c;清晰、简洁且有条理的文档都是连接各方的桥梁。本文将深入探讨技术文档的语言表达&#xff0c;从其重要性、写作原则到各种类型&a…...

UEFI 事件

UEFI 不再支持中断&#xff08;准确地说&#xff0c;UEFI 不再为开发者提供中断支持&#xff0c;但在UEFI内部还是使用了时钟中断&#xff09;&#xff0c;所有的异步操作都要通过事件&#xff08;Event&#xff09;来完成。 启动服务为开发者提供了用于操作事件、定时器及TPL…...

大师开讲-图形学领域顶级专家王锐开讲Vulkan、VSG开源引擎

王锐&#xff0c;毕业于清华大学&#xff0c;图形学领域顶级专家&#xff0c;开源技术社区的贡献者与推广者。三维引擎OpenSceneGraph的核心基石开发者与维护者&#xff0c;倾斜摄影数据格式osgb的发明人。著有《OpenSceneGraph 3 Cookbook》,《OpenSceneGraph 3 Beginers Guid…...

小F的矩阵值调整

问题描述 小F得到了一个矩阵。如果矩阵中某一个格子的值是偶数&#xff0c;则该值变为它的三倍&#xff1b;如果是奇数&#xff0c;则保持不变。小F想知道调整后的矩阵是什么样子的。 测试样例 样例1&#xff1a; 输入&#xff1a;a [[1, 2, 3], [4, 5, 6]] 输出&#xff1a…...

ORB-SLAM2 ----- LocalMapping::SearchInNeighbors()

文章目录 一、函数意义二、函数讲解三、函数代码四、本函数使用的匹配方法ORBmatcher::Fuse()1. 函数讲解2. 函数代码 四、总结 一、函数意义 本函数是用于地图点融合的函数&#xff0c;前面的函数生成了新的地图点&#xff0c;但这些地图点可能在前面的关键帧中已经生成过了&a…...

给UE5优化一丢丢编辑器性能

背后的原理 先看FActorIterator的定义 /*** Actor iterator* Note that when Playing In Editor, this will find actors only in CurrentWorld*/ class FActorIterator : public TActorIteratorBase<FActorIterator> {//..... }找到基类TActorIteratorBase /*** Temp…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候&#xff0c;难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵&#xff0c;或者买了二手 iPhone 却被原来的 iCloud 账号锁住&#xff0c;这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...