当前位置: 首页 > news >正文

数据结构与算法——N叉树(自学笔记)

本文参考 N 叉树 - LeetBook - 力扣(LeetCode)全球极客挚爱的技术成长平台

遍历

img

  • 前序遍历:A->B->C->E->F->D->G
  • 后序遍历:B->E->F->C->G->D->A
  • 层序遍历:A->B->C->D->E->F->G

(中序遍历只在二叉树有明确定义)

前序遍历

递归

与二叉树一样

import java.util.*;// 定义N叉树节点
class Node{public int val;public List<Node> children; // 使用链表定义子节点public Node(){}public Node(int val){this.val = val;}public Node(int val, List<Node> children){this.val = val;this.children = children;}
}class Solution {public List<Integer> preorder(Node root){List<Integer> res = new ArrayList<Integer>();preorderRecursion(root,res);return res;}public void preorderRecursion(Node root, List<Integer> res){if(root == null){return;}res.add(root.val);for(Node node : root.children){preorderRecursion(node, res);}}
}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

迭代

与二叉树不一样,很巧妙

class Solution {public List<Integer> preorder(Node root){List<Integer> res = new ArrayList<Integer>();if(root == null){return res;}Deque<Node> stack = new LinkedList<Node>();stack.push(root);while(!stack.isEmpty()){Node node = stack.pop();res.add(node.val);// 逆序入栈for(int i = node.children.size() - 1; i >= 0 ; i--){ stack.push(node.children.get(i)); }}return res;}
}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

后序遍历

递归

class Solution {public List<Integer> postorder(Node root){List<Integer> res = new ArrayList<Integer>();postorderRecursion(root,res);return res;}public void postorderRecursion(Node root, List<Integer> res){if(root == null){return;}for(Node node : root.children){postorderRecursion(node, res);}res.add(root.val); // 与前序遍历的唯一区别}
}

迭代

与前序遍历相似

class Solution {public List<Integer> postorder(Node root) {// 创建一个列表用来存储后序遍历的结果List<Integer> res = new ArrayList<>();// 如果树为空,直接返回空结果if (root == null) {return res;}// 使用栈进行遍历,栈用来模拟递归Deque<Node> stack = new ArrayDeque<Node>();// 创建一个集合,用来记录已经访问过的节点Set<Node> visited = new HashSet<Node>();// 将根节点推入栈中stack.push(root);// 遍历栈中的节点,直到栈为空while (!stack.isEmpty()) {// 获取栈顶的节点Node node = stack.peek();// 如果当前节点没有子节点(叶子节点),或者子节点已经遍历过if (node.children.size() == 0 || visited.contains(node)) {// 弹出栈顶元素,并将其值加入结果列表stack.pop();res.add(node.val);// 继续下一次循环continue;}// 如果当前节点有未访问的子节点,逆序将子节点压入栈中for (int i = node.children.size() - 1; i >= 0; --i) {stack.push(node.children.get(i));}// 将当前节点标记为已访问visited.add(node);}// 返回存储后序遍历结果的列表return res;}}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

层序遍历

常规方法

class Solution {public List<List<Integer>> levelOrder (Node root){List<List<Integer>> res = new ArrayList<>();if(root == null){return res;}Queue<Node> queue = new LinkedList<>();Node node = root;queue.offer(node);while(!queue.isEmpty()){List<Integer> level = new ArrayList<>(); // 创建子链表int size = queue.size(); // 计算当前层的大小for(int i = 0; i < size; i++){node = queue.poll(); // 把当前层的节点依次弹出,并加入小链表level.add(node.val);for(Node p : node.children){queue.offer(p); // 把下一层的节点依次加入队列}}res.add(level); // 将小链表加入大链表}return res;}
}
  • 时间复杂度:O(N),其中 N 是树的节点数。
  • 空间复杂度:O(N),即树的高度,最坏情况下递归栈和结果存储的空间需要O(N)的空间。

递归

N叉树的最大深度

class Solution {public int maxDepth(Node root){if(root == null){return 0;}int maxNmu = 0;List<Node> children = root.children;if (children != null){ // 增强for可以自动处理空集合,但不能处理null,最好添加判断for(Node p : children){maxNmu = Math.max(maxNmu,maxDepth(p)); // 找出最深层}}return maxNmu + 1;}
}

时间复杂度:O(n),其中 n 为 N 叉树节点的个数。每个节点在递归中只被遍历一次。

空间复杂度:O(height),其中 height 表示 N 叉树的高度。递归函数需要栈空间,而栈空间取决于递归的深度,因此空间复杂度等价于 N 叉树的高度。

相关文章:

数据结构与算法——N叉树(自学笔记)

本文参考 N 叉树 - LeetBook - 力扣&#xff08;LeetCode&#xff09;全球极客挚爱的技术成长平台 遍历 前序遍历&#xff1a;A->B->C->E->F->D->G后序遍历&#xff1a;B->E->F->C->G->D->A层序遍历&#xff1a;A->B->C->D->…...

【趣味升级版】斗破苍穹修炼文字游戏HTML,CSS,JS

目录 图片展示 开始游戏 手动升级&#xff08;满100%即可升级&#xff09; 升级完成&#xff0c;即可解锁打怪模式 新增功能说明&#xff1a; 如何操作&#xff1a; 完整代码 实现一个简单的斗破苍穹修炼文字游戏&#xff0c;你可以使用HTML、CSS和JavaScript结合来构建…...

【Oracle】个人收集整理的Oracle常用SQL及命令

【建表】 create table emp( id number(12), name nvarchar2(20), primary key(id) ); 【充值一】 insert into emp select rownum,dbms_random.string(*,dbms_random.value(6,20)) from dual connect by level<101; 【充值二】 begin for i in 1..100 loop inser…...

Linux内核4.14版本——ccf时钟子系统(5)——通用API

1. clk_get 1.1 __of_clk_get_by_name 1.2 clk_get_sys 2. clk_prepare_enable 2.1 clk_prepare 2.2 clk_enable 3. clk_set_rate 1. clk_get clock get是通过clock名称获取struct clk指针的过程&#xff0c;由clk_get、devm_clk_get、clk_get_sys、of_clk_get、of_clk_g…...

安装MySQL 5.7 亲测有效

前言&#xff1a;本文是笔者在安装MySQL5.7时根据另一位博主大大的安装教程基础上做了一些修改而成 首先在这里表示对博主大大的感谢 下面附博主大大地址 下面的步骤言简意赅 跟着做就不会出错 希望各位读者耐下心来 慢慢解决安装中出现的问题~MySQL 5.7 安装教程&#xff08;全…...

《Django 5 By Example》阅读笔记:p455-p492

《Django 5 By Example》学习第 16 天&#xff0c;p455-p492 总结&#xff0c;总计 38 页。 一、技术总结 1.myshop (1)打折功能 使用折扣码实现&#xff0c;但是折扣码是手动生成的&#xff0c;感觉实际业务中应该不是这样的。 (2)推荐功能 使用 Redis 做缓存&#xff0…...

Element-UI 官网的主题切换动画

文章目录 实现圆形扩散过渡动画 实现一下 Element-UI 官网的主题切换动画加粗样式 实现 首先我们起一个 html 文件&#xff0c;写一个按钮&#xff0c;以及简单的背景颜色切换&#xff0c;来模拟主题的切换 想要实现过渡效果&#xff0c;需要先用到一个 JavaScript 的原生方…...

Golang 构建学习

Golang 构建学习 如何搭建Golang开发环境 1. 下载GOlang包 https://golang.google.cn/dl/ 在地址上下载Golang 2. 配置包环境 修改全局环境变量&#xff0c;GOPROXY&#xff0c;GOPATH&#xff0c;GOROOT GOPROXYhttps://goproxy.cn,direct GOROOT"" // go二进…...

VM Virutal Box的Ubuntu虚拟机与windows宿主机之间设置共享文件夹(自动挂载,永久有效)

本文参考如下链接 How to access a shared folder in VirtualBox? - Ask Ubuntu &#xff08;1&#xff09;安装增强功能&#xff08;Guest Additions&#xff09; 首先&#xff0c;在网上下载VBoxGuestAdditions光盘映像文件 下载地址&#xff1a;Index of http://…...

分析 系统滴答时钟(tickClock),设置72MHz系统周期,如何实现1毫秒的系统时间?

一、CubeMX相关配置 1.1 相关引脚配置 1.2 相关时钟数配置 1.3 打开程序源码 二、相关函数分析...

C++优选算法十七 多源BFS

1.单源最短路问题 一个起点一个终点。 定义&#xff1a;在给定加权图中&#xff0c;选择一个顶点作为源点&#xff0c;计算该源点到图中所有其他顶点的最短路径长度。 2.多源最短路问题 定义&#xff1a;多源最短路问题指的是在图中存在多个起点&#xff0c;需要求出从这些…...

Mongodb入门到放弃

Mongodb分片概括 分片在多台服务器上分布数据的方法&#xff0c; Mongodb使用分片来支持具有非常大的数据集和高吞吐量的操作的部署 具有大数据集和高吞吐量应用程序的数据库系统&#xff0c;可以挑战单台服务器的容量。 例如&#xff0c;高查询率可以耗尽服务器的cpu容量&…...

青藤云安全携手财信证券,入选金融科技创新应用优秀案例

11月29日&#xff0c;由中国信息通信研究院主办的第四届“金信通”金融科技创新应用案例评选结果正式发布。财信证券与青藤云安全联合提交的“基于RASP技术的API及数据链路安全治理项目”以其卓越的创新性和先进性&#xff0c;成功入选金融科技创新应用优秀案例。 据悉&#x…...

在CentOS系统中安装工具包的时候报错的解决方法

我刚装了一个新的虚拟机&#xff0c;打算安装一些工具出现了错误信息 执行的命令如下&#xff1a; yum install -y yum-utils device-mapper-persistent-data lvm2错误信息如下 Cannot find a valid baseurl for repo: base/7/x86_64搜索了一下原因有好几种。 一是网络不通…...

cad软件打不开报错cad acbrandres dll加载失败

一切本来很顺利哒 但是&#xff0c;当我用快捷方式打开时&#xff0c;就出现了这个错误。进入文件路径&#xff0c;是有这个的&#xff1b; 在文件路径直接打开&#xff0c;也会提示错误 原因竟然是我改了个名字&#xff1a; 随便选的文件路径&#xff0c;空的,文件名为Acr…...

14、保存与加载PyTorch训练的模型和超参数

文章目录 1. state_dict2. 模型保存3. check_point4. 详细保存5. Docker6. 机器学习常用库 1. state_dict nn.Module 类是所有神经网络构建的基类&#xff0c;即自己构建一个深度神经网络也是需要继承自nn.Module类才行&#xff0c;并且nn.Module中的state_dict包含神经网络中…...

【前端开发】JS+Vuew3请求列表数据并分页

应用技术&#xff1a;原生JavaScript Vue3 $(function () {ini(); });function ini() {const { createApp, ref, onMounted } Vue;createApp({setup() {const data ref({studentList: [],page: 1,pageSize: 10,});const getStudentList async (page, key) > {window.ons…...

Trimble X12助力电力管廊数据采集,为机器人巡视系统提供精准导航支持

地下电缆是一个城市重要的基础设施&#xff0c;它不仅具有规模大、范围广、空间分布复杂等特点&#xff0c;更重要的是它还承担着信息传输、能源输送等与人们生活息息相关的重要功能&#xff0c;也是一个城市赖以生存和发展的物质基础。 01、项目概述 本次项目是对某区域2公里左…...

Docker 清理镜像策略详解

文章目录 前言一、删除 Docker 镜像1. 查看当前镜像2. 删除单个镜像3. 删除多个镜像4. 删除所有未使用的镜像5. 删除悬空的 Docker 镜像6. 根据模式删除镜像7. 删除所有镜像 二、删除 Docker 容器1. 查找容器2. 删除一个或多个特定容器3. 退出时删除容器4. 删除所有已退出的容器…...

【Linux】TCP网络编程

目录 V1_Echo_Server V2_Echo_Server多进程版本 V3_Echo_Server多线程版本 V3-1_多线程远程命令执行 V4_Echo_Server线程池版本 V1_Echo_Server TcpServer的上层调用如下&#xff0c;和UdpServer几乎一样&#xff1a; 而在InitServer中&#xff0c;大部分也和UDP那里一样&…...

排序学习整理(2)

上集回顾 排序学习整理&#xff08;1&#xff09;-CSDN博客 2.3 交换排序 交换排序的基本思想是&#xff1a;根据序列中两个记录键值的比较结果&#xff0c;交换这两个记录在序列中的位置。 特点&#xff1a; 通过比较和交换操作&#xff0c;将键值较大的记录逐步移动到序列…...

AI蛋白质设计与人工智能药物设计

AI蛋白质设计与人工智能药物设计 AI蛋白质设计 一、蛋白质相关的深度学习简介 1.基础概念 1.1.机器学习简介&#xff1a;从手写数字识别到大语言模型 1.2.蛋白质结构预测与设计回顾 1.3.Linux简介 1.4.代码环境&#xff1a;VS code和Jupyter notebook* 1.5.Python关键概…...

IOS ARKit进行图像识别

先讲一下基础控涧&#xff0c;资源的话可以留言&#xff0c;抽空我把它传到GitHub上&#xff0c;这里没写收积分&#xff0c;竟然充值才能下载&#xff0c;我下载也要充值&#xff0c;牛&#xff01; ARSCNView 可以理解画布或者场景 1 配置 ARWorldTrackingConfiguration AR追…...

初级数据结构——二叉搜索树

目录 前言一、定义二、基本操作三、时间复杂度分析四、变体五、动态图解六、代码模版七、经典例题[1.——700. 二叉搜索树中的搜索](https://leetcode.cn/problems/search-in-a-binary-search-tree/)代码题解 [2.——938. 二叉搜索树的范围和](https://leetcode.cn/problems/ra…...

C++设计模式之组合模式中如何实现同一层部件的有序性

在组合模式中&#xff0c;为了实现同一层上部件的有序性&#xff0c;可以采取以下几种设计方法&#xff1a; 1. 使用有序集合 使用有序集合&#xff08;如 std::list、std::vector 或其他有序容器&#xff09;来存储和管理子部件。这种方法可以确保子部件按照特定顺序排列&am…...

duxapp RN 端使用AppUpgrade 进行版本更新

版本更新包含了组件和工具的组合 注册 下面这是 duxcms 入口文件检查更新的注册方法&#xff0c;注册的同时会检查更新 import {request,updateApp,userConfig } from ./utils// 检查app更新 setTimeout(async () > {if (process.env.TARO_ENV rn) {// eslint-disable-n…...

【计网】自定义序列化反序列化(三) —— 实现网络版计算器【下】

&#x1f30e;实现网络版计算器【下】 本次序列化与反序列化所用到的代码&#xff0c;Tcp服务自定义序列化反序列化实现网络版计算器。 文章目录&#xff1a; 实实现网络版计算器【下】 客户端实现     基于守护进程的改写 &#x1f680;客户端实现 在这之前&#xff0c…...

神经网络中的优化方法(一)

目录 摘要Abstract1. 与纯优化的区别1.1 经验风险最小化1.2 代理损失函数1.3 批量算法和小批量算法 2. 神经网络中优化的挑战2.1 病态2.2 局部极小值2.3 高原、鞍点和其他平坦区域2.4 悬崖和梯度爆炸2.5 长期依赖2.6 非精确梯度2.7 局部和全局结构间的弱对应 3. 基本算法3.1 随…...

Linux 计算机网络基础概念

目录 0.前言 1.计算机网络背景 1.1 独立模式 1.2 网络互联 1.3 局域网&#xff08;Local Area Network&#xff0c;LAN&#xff09; 1.4 广域网&#xff08;Wide Area Network&#xff0c;WAN&#xff09; 2.协议 2.1什么是协议 2.2协议分层和软件分层 2.3 OSI七层网络模型 2.3…...

qt QGraphicsEllipseItem详解

1、概述 QGraphicsEllipseItem是Qt框架中QGraphicsItem的一个子类&#xff0c;它提供了一个可以添加到QGraphicsScene中的椭圆项。QGraphicsEllipseItem表示一个带有填充和轮廓的椭圆&#xff0c;也可以用于表示椭圆段&#xff08;通过startAngle()和spanAngle()方法&#xff…...

做网站好多钱/百度一下官网首页登录

通过这个网站上传excel:http://www.docpe.com/excel/excel-to-html.aspx 然后转换,将压缩包打开,实际就是一个html. 找到table标签的开始和结束,直接将这一大段考到md文件里面即可… 有一点很坑爹,就是如果你一行都是英文,好比包名,markdown不会将其压缩,导致包名就很长一行,其…...

常德哪里有做网站/网站优化怎么做

规范化齐次坐标的作用&#xff1a;可将图形变换表示为图形点集规范化次坐标矩阵与某一变换矩阵相乘的形式。 平移变换比例变换旋转变换 对称变换 错位变换相对任一参考点的二维几何变换 相对任意方向的二维几何变换...

红木家具网站建设总体规划/百度seo优化技巧

systemd-analyze 简介systemd-analyze 是 Linux 自带的分析系统启动性能的工具。systemd-analyze 可使用的命令&#xff1a;systemd-analyze [OPTIONS…] [time] systemd-analyze [OPTIONS…] blame systemd-analyze [OPTIONS…] critical-chain [UNIT…] systemd-analyze [OPT…...

wordpress首页调用缩略图/海外独立站

背景分析 随着互联网基础设施建设的不断完善和发展&#xff0c;带宽的不断提速&#xff0c;尤其是光纤入户、4G/5G/NB-IoT各种网络技术的大规模商用&#xff0c;视频随时随地可看、可控、可视频会议调度指挥、可智能预警、可智能检索回溯的诉求越来越多&#xff0c;尤其是移动…...

浙江高端网站建设/seo优化的主要任务包括

【CVPR 2021】基于Wasserstein Distance对比表示蒸馏方法&#xff1a;Wasserstein Contrastive Representation Distillation论文地址&#xff1a;主要问题&#xff1a;主要思路&#xff1a;Wasserstein Distance&#xff1a;基本内容&#xff1a;定义&#xff1a;具体实现&…...

怎样做网站管理/比较好的网络推广平台

这篇文章主要介绍了ThinkPHP在新浪SAE平台的部署的实现方法,以实例的形式详细讲述了WBlog的完整部署过程,需要的朋友可以参考下本文实例讲述了ThinkPHP在新浪SAE平台的部署方法。分享给大家供大家参考。具体实现方法如下&#xff1a;ThinkPHP自从thinkphp3.0版本开始提供了SAE平…...