如何从 Hugging Face 数据集中随机采样数据并保存为新的 Arrow 文件
如何从 Hugging Face 数据集中随机采样数据并保存为新的 Arrow 文件
在使用 Hugging Face 的数据集进行模型训练时,有时我们并不需要整个数据集,尤其是当数据集非常大时。为了节省存储空间和提高训练效率,我们可以从数据集中随机采样一部分数据,并将其保存为新的 Arrow 文件格式。本文将介绍如何通过代码实现这一过程,并解释如何计算文件大小,以便在 dataset_info.json
文件中记录文件信息,方便后续训练使用。
1. 背景介绍
Hugging Face 提供的 datasets
库支持直接加载和操作 Arrow 格式的数据集。Arrow 是一个高效的列式数据格式,适用于大规模数据处理和分析。其高效性体现在对内存的友好支持和读取速度上,这使得它在深度学习中得到广泛应用。
然而,整个数据集可能会非常庞大,尤其是在进行大规模模型训练时。为了提高效率和减少内存占用,通常我们只需要数据集的一部分。在这种情况下,随机采样并保存为一个新的 Arrow 文件是一个很好的解决方案。
2. 代码实现
以下是从 Hugging Face 数据集中随机采样 1000 条数据,并将其保存为新的 Arrow 文件的代码:
from datasets import Dataset, DatasetDict
import os# 加载原始 Arrow 文件
dataset = Dataset.from_file("/.cache/huggingface/datasets/allenai___tulu-3-sft-mixture/default/0.0.0/55e9fd6d41c3cd1a98270dff07557bc2a1e1ba91/tulu-3-sft-mixture-train-00000-of-00001.arrow"
)# 采样 1000 条数据(随机采样)
sampled_dataset = dataset.shuffle(seed=42).select(range(1000))# 保存为新的 Arrow 文件
output_path = "/.cache/huggingface/datasets/allenai_test"
sampled_dataset.save_to_disk(output_path)# 计算文件大小
file_size = sum(os.path.getsize(os.path.join(dp, f)) for dp, dn, filenames in os.walk(output_path) for f in filenames
)# 打印采样结果和大小
print(f"采样数据集保存路径: {output_path}")
print(f"文件大小: {file_size / (1024 ** 2):.2f} MB") # 转换为 MB
print(file_size)
代码步骤解释:
-
加载原始 Arrow 文件:我们通过
Dataset.from_file()
方法加载原始的 Arrow 文件。这个文件通常较大,包含了整个数据集的内容。 -
随机采样数据:使用
dataset.shuffle(seed=42).select(range(1000))
随机采样出 1000 条数据。shuffle()
方法随机打乱数据集,select()
方法选择数据集的前 1000 条记录。 -
保存为新文件:通过
save_to_disk()
方法将采样后的数据保存为新的 Arrow 文件。这时,我们可以将这个小型的数据集用于模型训练,而不需要加载整个大数据集。 -
计算文件大小:通过遍历文件夹的方式,使用
os.path.getsize()
获取保存的 Arrow 文件的大小。计算结果以 MB 为单位输出,便于理解文件的存储需求。
3. 文件大小和 dataset_info.json
保存采样数据时,计算文件大小是非常重要的。这是因为在 Hugging Face 的数据集格式中,dataset_info.json
文件记录了数据集的基本信息,包括数据集的大小、特征、列数等。在训练时,Hugging Face 会根据 dataset_info.json
文件的信息来进行数据加载和管理。确保文件大小准确,可以帮助在加载数据集时正确管理内存和硬盘空间。
下面是新的dataset_info.json文件内容,需要改的地方有
“num_bytes”: 3781998,
“num_examples”: 1000,
“download_size”: 3781998,
“dataset_size”: 3781998,
“size_in_bytes”: 3781998
这些,这里的3781998就是上面的file_size,num_examples是上面提到的采样1000条数据。
{"description": "A sampled version of tulu-3-sft-mixture dataset with 1000 examples.","citation": "","homepage": "","license": "","features": {"id": {"dtype": "string","_type": "Value"},"messages": [{"content": {"dtype": "string","_type": "Value"},"role": {"dtype": "string","_type": "Value"}}],"source": {"dtype": "string","_type": "Value"}},"builder_name": "parquet","dataset_name": "tulu-3-sft-mixture","config_name": "default","version": {"version_str": "0.0.0","major": 0,"minor": 0,"patch": 0},"splits": {"train": {"name": "train","num_bytes": 3781998,"num_examples": 1000,"shard_lengths": [1000],"dataset_name": "tulu-3-sft-mixture"}},"download_checksums": {},"download_size": 3781998,"dataset_size": 3781998,"size_in_bytes": 3781998
}
然后记得把之前的数据集文件夹改名为其他,比如改成这里的allenai___tulu-3-sft-mixture1,然后将新的数据集放到/.cache/huggingface/datasets/allenai___tulu-3-sft-mixture/default/0.0.0/55e9fd6d41c3cd1a98270dff07557bc2a1e1ba91/
这个路径下,请注意,这个路径应该与hf下载下来的路径完全相同。这个是新建的,可以使用LInux命令来新建:mkdir命令后面记得加-p参数
mkdir -p /.cache/huggingface/datasets/allenai___tulu-3-sft-mixture/default/0.0.0/55e9fd6d41c3cd1a98270dff07557bc2a1e1ba91/
如下图所示:需要在这里放入新的arrow文件(只需要放自己的那1000条数据的arrow即可,其他cache开头的arrow文件是系统自己生成的,不用管)和dataset_info.json文件(这个是需要按照上面更改后的,不能用之前的),然后arrow文件记得改名:tulu-3-sft-mixture-train-00000-of-00001.arrow,这里记得按照原始文件中的arrow文件命名格式,比如原来的是tulu-3-sft-mixture-train-00000-of-00006.arrow,tulu-3-sft-mixture-train-00001-of-00006.arrow这样,后面的00006是分块的个数,由于我们只有一个arrow文件,后面的00006应该改为00001。
4. 如何使用新的 Arrow 文件进行训练
在 Hugging Face 上使用数据集时,我们通常指定一个数据集路径,比如:
--dataset_mixer_list allenai/tulu-3-sft-mixture 1.0
这个参数指定了使用某个数据集进行训练。当我们使用采样的 Arrow 文件时,文件路径应该指向我们保存的采样文件(这里由于我们用新的arrow覆盖掉了原来的文件,所以不用指定新的路径,默认即可),而无需更改 --dataset_mixer_list
参数。这样,我们就可以利用数据集的一部分进行训练,而不需要更改 Hugging Face 数据集的整体配置。
5. 下载后的文件为何变成 Arrow 格式
在使用 Hugging Face 的数据集时,很多时候我们会下载数据集并看到它是以 .arrow
格式存储的。这是因为 Arrow 格式在性能和存储上优于其他格式,尤其是在大规模数据集的处理过程中,能够提供更高效的内存和磁盘使用。下载到本地后,文件会以 Arrow 格式存储,便于后续使用和处理。
6. 结论
通过从 Hugging Face 数据集中随机采样一部分数据并保存为新的 Arrow 文件,我们可以更高效地进行模型训练,特别是当数据集庞大时。通过计算文件大小并更新 dataset_info.json
文件,我们可以确保训练过程中数据管理的准确性。
这种方法不仅适用于大数据集,也为需要快速原型设计或进行小规模实验的研究人员提供了便利。
相关文章:
如何从 Hugging Face 数据集中随机采样数据并保存为新的 Arrow 文件
如何从 Hugging Face 数据集中随机采样数据并保存为新的 Arrow 文件 在使用 Hugging Face 的数据集进行模型训练时,有时我们并不需要整个数据集,尤其是当数据集非常大时。为了节省存储空间和提高训练效率,我们可以从数据集中随机采样一部分数…...
11 设计模式之代理模式(送资料案例)
一、什么是代理模式? 在现实生活中,我们常常遇到这样的场景:由于某些原因,我们可能无法亲自完成某个任务,便会委托他人代为执行。在设计模式中,代理模式 就是用来解决这种“委托”问题的࿰…...
MongoDB聚合操作
1.聚合操作 聚合操作处理数据记录并返回计算结果。聚合操作组值来自多个文档,可以对分组数据执行各种操作以返回单个结果。聚合操作包含三类:单一作用聚合、聚合管道、MapReduce。 单一作用聚合:提供了对常见聚合过程的简单访问,…...
第二十三周周报:High-fidelity Person-centric Subject-to-Image Synthesis
目录 摘要 Abstract TDM SDM SNF 测试时的人物细节捕捉 主要贡献 总结 摘要 本周阅读了一篇2024年CVPR的关于高保真度、以人物为中心的图像合成方法的论文:High-fidelity Person-centric Subject-to-Image Synthesis。该论文提出了一种名为Face-diffuser的…...
Cesium 与 Leaflet:地理信息可视化技术比较
在现代地理信息系统(GIS)和空间数据可视化领域,Cesium 和 Leaflet 是两种非常常见的地理可视化库,它们各自适用于不同的应用场景。Cesium 专注于三维地球视图和复杂空间分析,而 Leaflet 则注重轻量级的二维地图展示。本文将对这两种技术进行详细的对比,帮助开发者根据具体…...
Linux 服务器使用指南:诞生与演进以及版本(一)
一、引言 在当今信息技术的浪潮中,Linux 操作系统无疑是一个关键的支柱😎。无论是在服务器管理、软件开发还是大数据处理领域,Linux 都以其卓越的适应性和优势脱颖而出👍。然而,对于许多新手而言,Linux 系统…...
龙蜥 Linux 安装 JDK
龙蜥 Linux 安装 JDK 下载安装解压到目标路径设置环境变量直接在启动脚本中临时设置 参考资料 下载 这个就不赘述了,参考资料中的另外两篇安装帖,都有。 如果不能上网,也可以去内网其他之前装过JDK的服务器,直接复制过来。 tar …...
Python小白语法基础20(模块与包)
0) 参考文章 python的模块(module)、包(package)及pip_python package-CSDN博客Python之函数、模块、包库_python函数、模块和包-CSDN博客Python函数模块自定义封装及模块嵌套导入(手把手教程)_python如何封装一个模块-CSDN博客 1) 模块与包说明 软件…...
详解 Qt QtPDF之QPdfPageNavigator 页面跳转
文章目录 前言头文件: 自 Qt 6.4 起继承自: 属性backAvailable : const boolcurrentLocation : const QPointFcurrentPage : const intcurrentZoom : const qrealforwardAvailable : const bool 公共函数QPdfPageNavigator(QObject *parent)virtual ~QPd…...
通俗易懂:序列标注与命名实体识别(NER)概述及标注方法解析
目录 一、序列标注(Sequence Tagging)二、命名实体识别(Named Entity Recognition,NER)**命名实体识别的作用****命名实体识别的常见实体类别** : 三、标签类型四、序列标注的三种常见方法1. **BIO…...
【C语言】二叉树(BinaryTree)的创建、3种递归遍历、3种非递归遍历、结点度的实现
代码主要实现了以下功能: 二叉树相关数据结构定义 定义了二叉树节点结构体 BiTNode,包含节点数据值(字符类型)以及指向左右子树的指针。 定义了顺序栈结构体 SqStack,用于存储二叉树节点指针,实现非递归遍历…...
2024年11月文章一览
2024年11月编程人总共更新了21篇文章: 1.2024年10月文章一览 2.《使用Gin框架构建分布式应用》阅读笔记:p307-p392 3.《使用Gin框架构建分布式应用》阅读笔记:p393-p437 4.《使用Gin框架构建分布式应用》读后感 5.《Django 5 By Example…...
重生之我在异世界学编程之C语言:二维数组篇
大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文一 二维数组的创建1. 二维数组的…...
和鲸科技创始人CEO范向伟出席首届工业智算产业发展研讨会,共话 AI 创新与产业化落地
11 月 22 日,首届工业智算产业发展研讨会在中国工业互联网研究院召开。工业和信息化部党组成员、副部长单忠德,国家信息中心大数据发展部副主任魏颖出席会议并致辞。中国工程院院士、北京化工大学教授高金吉,工业和信息化部信息通信发展司二级…...
postgres数据备份与主从配置
备份PostgreSQL数据库 备份格式有几种选择: bak:压缩二进制格式 sql:明文转储 tar: tarball mydb# \q -bash-4.2$ pg pgawk pg_dump pgrep pg_basebackup pg_dumpall pg_restore# 备份所有的 -bash-4.2$ pg_dumpall &…...
【二分查找】力扣 275. H 指数 II
一、题目 二、思路 h 指数是高引用引用次数,而 citations 数组中存储的就是不同论文被引用的次数,并且是按照升序排列的。也就是说 h 指数将整个 citations 数组分成了两部分,左半部分是不够引用 h 次 的论文,右半部分论文的引用…...
使用uni-app进行开发前准备
使用uni-app进行开发,需要遵循一定的步骤和流程。以下是一个详细的指南,帮助你开始使用uni-app进行开发: 一、开发环境搭建 安装Node.js: 首先,从Node.js的官方网站(https://nodejs.org/)下载并…...
AI开发-深度学习框架-PyTorch-torchnlp
1 需求 Welcome to Pytorch-NLP’s documentation! — PyTorch-NLP 0.5.0 documentation 2 接口 3 示例 4 参考资料...
VBA数据库解决方案第十七讲:Recordset对象记录位置的定位方法
《VBA数据库解决方案》教程(版权10090845)是我推出的第二套教程,目前已经是第二版修订了。这套教程定位于中级,是学完字典后的另一个专题讲解。数据库是数据处理的利器,教程中详细介绍了利用ADO连接ACCDB和EXCEL的方法…...
Ubuntu 操作系统
一、简介 Ubuntu 是一个基于 Linux 的开源操作系统,它由 Canonical Ltd. 公司维护和资助。Ubuntu 以其易用性、强大的社区支持和定期的安全更新而闻名,一个一桌面应用为主的操作系统。 二、用户使用 1、常规用户的登陆方式 在登录时一般使用普通用户&…...
Maven 内置绑定到底怎么回事?
Maven是一个很好的项目管理工具. 一方面有着众多脚手架,另一方面在依赖管理方面 帮助使用者做了很多准备工作. 随着Maven的使用和学习的深入,大家会不仅有一些问题。 比较浅显的一个就是, 日常我们的Maven 下载安装好以后,在IDE 里…...
如何把Qt exe文件发送给其他人使用
如何把Qt exe文件发送给其他人使用 1、先把 Debug改成Release2、重新构建项目3、运行项目4、找到release文件夹5、新建文件夹,存放exe文件6、打开qt控制台串口7、下载各种文件8、压缩,发送压缩包给别人 1、先把 Debug改成Release 2、重新构建项目 3、运行…...
【汇编语言】call 和 ret 指令(三) —— 深度解析汇编语言中的批量数据传递与寄存器冲突
文章目录 前言1. 批量数据的传递1.1 存在的问题1.2 如何解决这个问题1.3 示例演示1.3.1 问题说明1.3.2 程序实现 2. 寄存器冲突问题的引入2.1 问题引入2.2 分析与解决问题2.2.1 字符串定义方式2.2.2 分析子程序功能2.2.3 得到子程序代码 2.3 子程序的应用2.3.1 示例12.3.2 示例…...
定义函数合并字符串—超详细讲解
【问题描述】 编写一个函数void str_bin(char str1[ ], char str2[ ]), str1、str2是两个有序字符串(其中字符按ASCII码从小到大排序),将str2合并到字符串str1中,要求合并后的字符串仍是有序的,允许字符重…...
实现 vue3 正整数输入框组件
1.实现代码 components/InputInteger.vue <!-- 正整数输入框 --> <template><el-input v-model"_value" input"onInput" maxlength"9" clearable /> </template><script lang"ts" setup> import { ref …...
Leetcode - 周赛425
目录 一,3364. 最小正和子数组 二, 3365. 重排子字符串以形成目标字符串 三,3366. 最小数组和 四,3367. 移除边之后的权重最大和 一,3364. 最小正和子数组 本题可以直接暴力枚举,代码如下: …...
c++(斗罗大陆2)
我把魂力等级更新到了31级 #include<iostream> #include<conio.h> #include<windows.h> #include<stdlib.h> #include<stdio.h> #include<time.h> #include<string.h> using namespace std; int qs10; int xthl0;//先…...
redis常见数据类型
Redis是一个开源的、内存中的数据结构存储系统,它可以用作数据库、缓存和消息代理,支持多种数据类型。 一、数据类型介绍 String(字符串) Redis中最基本的数据类型。可以存储任何类型的数据,包括字符串、数字和二进制…...
MySQL - 性能优化
使用 Explain 进行分析 Explain 用来分析 SELECT 查询语句,开发人员可以通过分析 Explain 结果来优化查询语句。 比较重要的字段有: select_type : 查询类型,有简单查询、联合查询、子查询等 key : 使用的索引 rows : 扫描的行数 type :…...
Linux进程概念-详细版(一)
目录 进程概念 描述进程-PCB task_struct-PCB的一种 task_struct内容分类 查看进程 通过系统目录查看 通过ps命令查看 通过系统调用获取进程的PID和PPID 通过系统调用创建进程 fork的认识 使用if进行分流 最后的总结 Linux进程状态 运行状态-R 浅度睡眠状态-S 深度睡…...
西安北郊做网站公司/唐山seo快速排名
链接:题目 来源:牛客网 处女座的期末复习 时间限制:C/C 1秒,其他语言2秒 空间限制:C/C 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 快要期末考试了,处女座现在有n门课程需要…...
ui设计培训一般多久/嘉兴百度seo
2019独角兽企业重金招聘Python工程师标准>>> 当前日志系统常用的有elk(elasticsearch logstash kibana),不过很多公司不喜欢用logstash,而会用很多其他性能好、资源利用少的日志采集软件,其中rsyslog会是很…...
如何租用服务器做网站/长安seo排名优化培训
MPI简介在程序中,不同的进程需要相互的数据交换,特别是在科学计算中,需要大规模的计算与数据交换,集群可以很好解决单节点计算力不足的问题,但在集群中大规模的数据交换是很耗费时间的,因此需要一种在多节点…...
烟台开发区人才市场招聘信息/合肥网络公司seo建站
奔小康赚大钱Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2325 Accepted Submission(s): 1020Problem Description传说在遥远的地方有一个非常富裕的村落,有一天,村长决定进行制度改革:重新分配房…...
仿wordpress站/精准客户信息一条多少钱
1、苹果公司的借鉴 1)、硬件为软件服务2)、软件为用户体验服务3)、用户体验为情感服务4)、产品为真正的需求服务2、如何在成熟的市场抢占一席之地?1)、对目标市场了如指掌,对现有产品的缺陷洞若…...
wordpress seo by yoast中文/seo技术分享
OLED显示电容式土壤湿度传感器数据 本文将演示如何在OLED中显示土壤湿度传感器数据以及不同的数据值范围,使用不同的表情图片显示。 本次实例主要通过如下步骤来完成: 土壤湿度传感器数据采集OLEDc驱动采集数据处理及OLED显示在前面的文章中,对OLED及其驱动做了详细的介绍,…...