深度学习的python基础(1)
一.tensor创建
1.张量的定义
张量在形式上就是多维数组,例如标量就是0维张量,向量就是一维张量,矩阵就是二维张量,而三维张量就可以想象RGB图片,每个channel是一个二维的矩阵,共有三个channel,还可以考虑更多。
在代码中创建张量Tensor数据类型时,除了封装张量本身的数据data外,还会附加张量的一些性质和操作,例如数据的梯度(grad),创建tensor的函数(grad_fun,是求导的关键),是否为叶子节点(is_leaf),是否需要梯度(require_grad)。
2.张量的创建
2.1 tensor直接创建
torch.tensor([1])
arr = np.ones((3, 3))
t = torch.tensor(arr, device='cuda')
# t = torch.tensor(arr)
值得注意的点:
(1)tensor()括号里的数据可以是list(以“()”表示),也可以是数组(以[]表示),也可以是numpy,即先用numpy创建一个numpy,然后直接导入(如下);
(2)注意数据类型,有时候需要在数字后面加“.”表示float,因为求导时候需要float类型;
(3)可以添加device=’cuda’获得加速。
2.2 from_numpy从numpy中创建
arr = np.array([[1, 2, 3], [4, 5, 6]])
t = torch.from_numpy(arr)
# arr[0, 0] = 0
t[0, 0] = -1
值得注意的点:
(1)这个创建的tensor和原来的numpy共享内存,也即是说修改tensor就会修改原来的numpy。
2.3 从数字中创建
# 通过torch.zeros创建张量
out_t = torch.tensor([1])
#t=torch.zeros((3,3))
t = torch.zeros((3, 3), out=out_t)
值得注意的点:
(1)也可以先创建一个tensor,然后在zeros函数的out接收创建的zeros,二者的size可以不一样,创建完成后二者一致。
(2)还可以torch.ones
(3)全1张量还可以用full函数
t = torch.full((3, 3), 1)
注意试验一下是不是还可以创建全“2”张量?
(4)还可以利用torch.zeros_like(),torch.ones_like(),torch.full_like创建和input张量(类似于size,只不过是用一个真实的张量表示)一致的全0/1张量。
(5)torch.eye()创建单位对角矩阵
2.4 等差均分创建
t = torch.arange(2, 10, 2)
(1)创建等差数列张量,后面为等差值,默认为1.
# t = torch.linspace(2, 10, 5)
t = torch.linspace(2, 10, 6)
(1)在[start,end]中均分n等份,这时会出现小数。
(2)还可以等log创建,torch.logspace()
2.5 依据概率创建
# 通过torch.normal创建正态分布张量
# mean:张量 std: 张量
# mean = torch.arange(1, 5, dtype=torch.float)
# std = torch.arange(1, 5, dtype=torch.float)
# t_normal = torch.normal(mean, std)
# mean:标量 std: 标量
# t_normal = torch.normal(0., 1., size=(4,))
# mean:张量 std: 标量
mean = torch.arange(1, 5, dtype=torch.float)
std = 1
t_normal = torch.normal(mean, std)
(1)注意mean,std可以是标量和张量的组合,共四种模式。
(2)torch.randn(),torch.randn_like()创建标准正态分布张量;
(3)torch.rand(),torch.rand_like()创建[0,1]均匀分布。
(4)torch.randint(low,high),torch.randint_like(low,high)创建[low,high)均匀分布。
(5)torch.randperm(n),创建从0到n-1的随机排列张量
(6)torch.bernoulli(input),创建以input为概率值的伯努利分布张量。
3.张量的操作
3.1张量拼接
torch.cat(tensors,dim)
t = torch.ones((2, 3))
t_0 = torch.cat([t, t], dim=0)
t_1 = torch.cat([t, t, t], dim=1)
(1)是在原来的维度上进行拼接
torch.stack(tensor,dim)
t = torch.ones((2, 3))
t_stack = torch.stack([t, t, t], dim=0)
(1)是在新创建的维度上进行拼接,如果维度小于现存的维度,则创建该维度后,后面的递推。比如t现在维度是2*3,拼接后,则是3*2*3,其中后两维的2*3是原来的t。
3.2 张量切分
torch.chunk(input,chunk,dim)
a = torch.ones((2, 7)) # 7
list_of_tensors = torch.chunk(a, dim=1, chunks=3) # 3
for idx, t in enumerate(list_of_tensors):
(1)在维度dim上进行chunk均分,如果不能整除,最后一份为余数。
torch.split(input,int/list,dim)
t = torch.ones((2, 5))
list_of_tensors = torch.split(t, [2, 1, 1], dim=1) # [2 , 1, 2]
for idx, t in enumerate(list_of_tensors):
# list_of_tensors = torch.split(t, [2, 1, 2], dim=1)
# for idx, t in enumerate(list_of_tensors):
(1)为int时,和chunk功能类似;
(2)为list时,可以按照设定值切分,但总和要与input维度上值一致。
3.3 张量索引
torch.index_select(input,dim,select)
t = torch.randint(0, 9, size=(3, 3))
idx = torch.tensor([0, 2], dtype=torch.long) # float
t_select = torch.index_select(t, dim=0, index=idx)
(1)在dim维度上按照select索引数值。
torch.maksed_select(input,mask)
t = torch.randint(0, 9, size=(3, 3))
mask = t.le(5) # ge is mean greater than or equal/ gt: greater than le lt
t_select = torch.masked_select(t, mask)
- mask是和input同大小的布尔类型张量,按照TRUE返回一维张量。
3.4张量变形
torch.reshape(input,shape)
t = torch.randperm(8)
t_reshape = torch.reshape(t, (-1, 2, 2)) # -1
t[0] = 1024
3.5 张量维度交换
torch.transpose(input,dim1,dim2)
# torch.transpose
t = torch.rand((2, 3, 4))
t_transpose = torch.transpose(t, dim0=1, dim1=2) # c*h*w h*w*c
(1)维度变换之后,数据是如何变化的?
(2)torch.t()二维张量(矩阵)转置
3.6 张量压缩
torch.sequeeze(input,dim)
t = torch.rand((1, 2, 3, 1))
t_sq = torch.squeeze(t)
t_0 = torch.squeeze(t, dim=0)
t_1 = torch.squeeze(t, dim=1)
(1)默认压缩所有为1的维度,也可以指定维度,若指定维度不为1,则不会压缩。
(2)torch.unsequeeze(),扩展维度的值。
4.张量的数学运算


t_0 = torch.randn((3, 3))
t_1 = torch.ones_like(t_0)
t_add = torch.add(t_0, 10, t_1)
- torch.add可同时执行乘法运算。
5.计算图
计算图是用来描述运算的有向无环图,包括结点(node)和边(edge)。结点表示数据,如向量,矩阵,张量等,边表示运算,如加减乘除卷积等。

import torch
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x) # retain_grad()
b = torch.add(w, 1)
y = torch.mul(a, b)
y.backward()
print(w.grad)
# 查看叶子结点
# print("is_leaf:\n", w.is_leaf, x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)
# 查看梯度
# print("gradient:\n", w.grad, x.grad, a.grad, b.grad, y.grad)
# 查看 grad_fn
print("grad_fn:\n", w.grad_fn, x.grad_fn, a.grad_fn, b.grad_fn, y.grad_fn)
6.自动求导
torch.autograd.backward(tensors,retain_graph)
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
y.backward(retain_graph=True)
# print(w.grad)
y.backward()
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x) # retain_grad()
b = torch.add(w, 1)
y0 = torch.mul(a, b) # y0 = (x+w) * (w+1)
y1 = torch.add(a, b) # y1 = (x+w) + (w+1) dy1/dw = 2
loss = torch.cat([y0, y1], dim=0) # [y0, y1]
grad_tensors = torch.tensor([1., 2.])
loss.backward(gradient=grad_tensors) # gradient 传入 torch.autograd.backward()中的grad_tensors
torch.autograd.grad(outputs,inputs,retain_graph)
x = torch.tensor([3.], requires_grad=True)
y = torch.pow(x, 2) # y = x**2
grad_1 = torch.autograd.grad(y, x, create_graph=True) # grad_1 = dy/dx = 2x = 2 * 3 = 6
grad_2 = torch.autograd.grad(grad_1[0], x) # grad_2 = d(dy/dx)/dx = d(2x)/dx = 2
- autograd.grad()会返回梯度张量供保存。
相关文章:
深度学习的python基础(1)
一.tensor创建 1.张量的定义 张量在形式上就是多维数组,例如标量就是0维张量,向量就是一维张量,矩阵就是二维张量,而三维张量就可以想象RGB图片,每个channel是一个二维的矩阵,共有三个channel࿰…...
拥抱 OpenTelemetry:阿里云 Java Agent 演进实践
作者:陈承 背景 在 2018 年的 2 月,ARMS Java Agent 的第一个版本正式发布,为用户提供无侵入的的可观测数据采集服务。6 年后的今天,随着软件技术的迅猛发展、业务场景的逐渐丰富、用户规模的快速增长,我们逐渐发现过…...
003 MATLAB基础计算
01 方程组的求解 多项式及其运算 多项式在MATLAB中以向量形式存储。 即n次多项式用一个长度为n1的系数向量来表示,且按降幂,缺少的幂次对应的向量元素为0。 多项式的运算主要包括多项式的四则运算、求导、求值和求根运算 多项式的四则运算:…...
安卓逆向之Android-Intent介绍
Intent是各个组件之间交互的一种重要方式,它不仅可以指明当前组件想要执行的动作,而且还能在各组件之间传递数据。Intent一般可用于启动Activity、启动Service、发送广播等场景。Intent有多个构造函数的重载。 显式intent 显式 Intent 明确指定要启动的…...
数据库日期时间用什么类型?
数据库中的日期时间类型主要包括DATE、TIME、DATETIME和TIMESTAMP等,它们在存储、格式和范围等方面有所不同。以下是这些类型的详细说明和异同比较: 1. DATE类型 用途:用于存储日期值,不包含时间部分。格式:YYYY-MM-…...
Python中字符串和正则表达式
Python中字符串和正则表达式 在Python编程中,字符串是最常用的数据类型之一。字符串用于表示文本数据,而正则表达式则是一种强大的工具,用于处理和匹配字符串中的模式。本文将介绍Python中的字符串操作、字符串格式化以及如何使用正则表达式…...
Leecode刷题C语言之N皇后
执行结果:通过 执行用时和内存消耗如下: 代码如下: int solutionsSize;char** generateBoard(int* queens, int n) {char** board (char**)malloc(sizeof(char*) * n);for (int i 0; i < n; i) {board[i] (char*)malloc(sizeof(char) * (n 1))…...
即时通讯| IM+RTC在AI技术加持下的社交体验
即时通讯作为互联网的重要应用之一,见证了中国互联网30年发展的辉煌历程。 它从最初的文字交流,发展到如今的语音、视频通话,甚至是虚拟现实社交,已经渗透到生活的社交、娱乐、商务等方方面面,成为现代社会不可或缺的一…...
repo仓库转移到自己本地的git服务器
前提条件:搭建好gitolite 以转移正点原子rk3568_linux工程为例子,将其转移到自己的git服务器。 获取完整repo仓库 将正点原子epo仓库sync出来 evanevan-X99:~/SRC/atk$ .repo/repo/repo sync -l -j10 evanevan-X99:~/SRC/atk$ .repo/repo/repo list -n…...
微服务即时通讯系统的实现(服务端)----(2)
目录 1. 语音识别子服务的实现1.1 功能设计1.2 模块划分1.3 模块功能示意图1.4 接口的实现 2. 文件存储子服务的实现2.1 功能设计2.2 模块划分2.3 模块功能示意图2.4 接口的实现 3. 用户管理子服务的实现3.1 功能设计3.2 模块划分3.3 功能模块示意图3.4 数据管理3.4.1 关系数据…...
人工智能-深度学习-神经网络-激活函数
激活函数通过引入非线性来增强神经网络的表达能力,对于解决线性模型的局限性至关重要。由于反向传播算法(BP)用于更新网络参数,因此激活函数必须是可微的,也就是说能够求导的。 满足激活函数的条件 1.可微分,也就是可求导 激活函…...
vue3+ts+uniapp微信小程序顶部导航栏
这是colorui改的,不用就不用看啦 color-ui(https://docs.xzeu.com/#/) 新建component文件夹创建topNavigation.vue <template><view><view class"cu-custom" :style"height: CustomBar px"><view class"cu-bar…...
IAR中编译下载未下载问题
第一张图片是正常下载,第二张未正常下载。经过查看download选项发现 启用了 suppress download (禁用下载)...
springboot(20)(删除文章分类。获取、更新、删除文章详细)(Validation分组校验)
目录 一、删除文章分类功能。 (1)接口文档。 1、请求路径、请求参数。 2、请求参数。 3、响应数据。 (2)实现思路与代码书写。 1、controller层。 2、service接口业务层。 3、serviceImpl实现类。 4、mapper层。 5、后端接口测试。…...
英语系统语法书面记载:高级语法 8 的状语从句
在英语高级语法中,状语从句是一种用来修饰动词、形容词、副词或整个句子的从句,它提供有关时间、地点、原因、条件、方式、让步等信息。状语从句通常由特定的连词引导。以下是常见的几种状语从句类型及其用法: 1. 时间状语从句 (Adverbial Cl…...
C语言:深入理解指针(1)
一.内存和地址 在讲内存和地址之前,我们想有个生活中的案例: 假设有一栋宿舍楼,把你放在楼里,楼上有100个房间,但是房间没有编号,你的一个朋友来找你玩,如果想找到你,就得挨个房子去…...
priority_queue--优先队列
一、认识优先队列 priority_queue(优先队列)是 C 标准模板库(STL)中的一个容器适配器。它的底层实现通常是用堆(一般是二叉堆)来实现的。优先队列中的元素按照一定的优先级顺序进行排列,在队首的…...
Paper -- 建筑物高度估计 -- 基于深度学习、图像处理和自动地理空间分析的街景图像建筑高度估算
论文题目: Building height estimation from street-view imagery using deep learning, image processing and automated geospatial analysis 中文题目: 基于深度学习、图像处理和自动地理空间分析的街景图像建筑高度估算 作者: Ala’a Al-Habashna, Ryan Murdoch 作者单位: …...
开发一套ERP 第八弹 RUst 插入数据
更全面的报错,方便检查错误在哪里,现代高级语言越来越智能 还是得看下原文档怎么操作的 src 目录为crate 的根目录 想在crate 中模块相互引入需要在 main 中声明,各个模块,然后才能在各个模块中相互引入和使用 原始工程引入,避免直接使用 lib.rs 回合cargo 中的一些 工程管理出…...
回退用 git revert 还是 git reset?
git revert 会生成一个新的 commit 来记录此次操作;git reset 是把 HEAD 指针向前挪动一次,会减少一个 commit。 回退用 git revert 回退还是用 git reset,核心就一点: 是否需要记录这次回退。 如果需要记录这次回退,…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
