A-star算法
算法简介
A*(A-star)算法是一种用于图形搜索和路径规划的启发式搜索算法,它结合了最佳优先搜索(Best-First Search)和Dijkstra算法的思想,能够有效地寻找从起点到目标点的最短路径。A*算法广泛应用于导航、游戏AI、机器人路径规划等领域。
代码说明
Node类:表示搜索过程中的一个节点,包含位置、从起点到当前节点的代价 (g)、从当前节点到目标节点的启发式代价 (h),以及父节点用于回溯路径。
A算法:astar函数实现了A算法的核心逻辑。通过开放列表优先队列不断从代价最小的节点扩展,直到找到目标节点。
启发式函数:heuristic使用曼哈顿距离作为启发式代价,适用于网格布局。
邻居节点:get_neighbors返回当前节点的四个邻居(上下左右)。

代码
import heapqclass Node:def __init__(self, position, g=0, h=0):self.position = position # 坐标 (x, y)self.g = g # 从起点到当前节点的代价self.h = h # 从当前节点到目标节点的预估代价(启发式估计)self.f = g + h # 总代价self.parent = None # 记录父节点def __lt__(self, other):return self.f < other.f # 优先队列按 f 值排序def astar(start, goal, grid):# 创建开放列表(优先队列)和闭合列表open_list = []closed_list = set()# 将起点添加到开放列表start_node = Node(start, 0, heuristic(start, goal))heapq.heappush(open_list, start_node)while open_list:# 从开放列表中取出代价最小的节点current_node = heapq.heappop(open_list)# 如果目标已经找到,返回路径if current_node.position == goal:path = []while current_node:path.append(current_node.position)current_node = current_node.parentreturn path[::-1] # 返回反转后的路径# 将当前节点添加到闭合列表closed_list.add(current_node.position)# 获取相邻节点neighbors = get_neighbors(current_node.position)for neighbor in neighbors:if neighbor in closed_list:continue # 如果相邻节点已经被处理过,跳过g_cost = current_node.g + 1 # 假设每步的代价为1h_cost = heuristic(neighbor, goal)neighbor_node = Node(neighbor, g_cost, h_cost)neighbor_node.parent = current_node# 如果相邻节点不在开放列表中,加入开放列表heapq.heappush(open_list, neighbor_node)return None # 如果没有路径,返回 Nonedef heuristic(node, goal):# 计算启发式代价(这里使用曼哈顿距离)return abs(node[0] - goal[0]) + abs(node[1] - goal[1])def get_neighbors(position):# 获取当前节点的相邻节点(上下左右)x, y = positionreturn [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]if __name__ == "__main__":start = (0, 0) # 起点goal = (4, 4) # 目标点grid = [[0 for _ in range(5)] for _ in range(5)] # 假设网格,0表示可行走区域path = astar(start, goal, grid)print("找到的路径:", path)相关文章:
A-star算法
算法简介 A*(A-star)算法是一种用于图形搜索和路径规划的启发式搜索算法,它结合了最佳优先搜索(Best-First Search)和Dijkstra算法的思想,能够有效地寻找从起点到目标点的最短路径。A*算法广泛应用于导航、…...
前端用原生js下载File对象文件,多用于上传附件时,提交之前进行点击预览,或打开本地已经选择待上传的附件列表
用于如上图场景,已经点击选择了将要上传的文件,在附件列表里面用户希望点击下载文件,以核实自己是否选中了需要上传的文件,此刻就需要 用到下面的方法: // 下载File对象文件 downloadByFileObject(file, { fileName }…...
服务器记录所有用户docker操作,监控删除容器/镜像的人
文章目录 使用场景安装auditd添加docker审计规则设置监控日志大小与定期清除查询 Docker 操作日志查看所有用户,所有操作日志查看特定用户的 Docker 操作查看所有用户删除容器/镜像日志过滤特定时间范围内日志 使用场景 多人使用的服务器,使用的docker …...
关于使用天地图、leaflet、ENVI、Vue工具实现 前端地图上覆盖上处理的农业地块图层任务
1.项目框架搭建 项目地址:Webgis: 一个关于webgis、天地图、Leaflet、Vue、数据库的学习框架。 ①git到本地,vscode打开。 ② 配置后端 搜索下载MySQL插件(前提:电脑中装有MySQL才可应用)。 连接数据库。 配置基本…...
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
目录 1.算法仿真效果 2.算法涉及理论知识概要 3.MATLAB核心程序 4.完整算法代码文件获得 1.算法仿真效果 matlab2022a仿真结果如下(完整代码运行后无水印): 仿真操作步骤可参考程序配套的操作视频。 2.算法涉及理论知识概要 在现代社会…...
用 React 编写一个笔记应用程序
这篇文章会教大家用 React 编写一个笔记应用程序。用户可以创建、编辑、和切换 Markdown 笔记。 1. nanoid nanoid 是一个轻量级和安全的唯一字符串ID生成器,常用于JavaScript环境中生成随机、唯一的字符串ID,如数据库主键、会话ID、文件名等场景。 …...
如何离线安装dockerio
如何离线安装dockerio 一、下载Docker离线安装包二、上传离线安装包三、解压安装包四、复制文件到系统目录五、配置Docker服务六、设置文件权限并重新加载配置七、启动Docker服务八、设置开机自启动九、验证安装Docker是一个开源的容器化平台,用于开发、发布和运行应用程序。离…...
LocalDateTime序列化(跟redis有关)
使用过 没成功,序列化后是[2024 11 10 17 22 20]差不多是这样, 反序列化后就是: [ 2024 11 10.... ] 可能是我漏了什么 这是序列化后的: 反序列化后: 方法(加序列化和反序列化注解)&…...
【redis】如何跑
在 Windows 上配置 Redis 需要一些额外的步骤,因为 Redis 官方并没有为 Windows 提供原生支持。不过,可以通过以下方法来安装和配置 Redis。 方法一:使用 Windows 版 Redis(非官方版本) 下载 Redis for Windows Redis…...
Scala学习记录,全文单词统计
package test32 import java.io.PrintWriter import scala.io.Source //知识点 // 字符串.split("分隔符":把字符串用指定的分隔符,拆分成多个部分,保存在数组中) object test {def main(args: Array[String]): Unit {//从文件1.t…...
【MyBatis】验证多级缓存及 Cache Aside 模式的应用
文章目录 前言1. 多级缓存的概念1.1 CPU 多级缓存1.2 MyBatis 多级缓存 2. MyBatis 本地缓存3. MyBatis 全局缓存3.1 MyBatis 全局缓存过期算法3.2 CacheAside 模式 后记MyBatis 提供了缓存切口, 采用 Redis 会引入什么问题?万一遇到需强一致场景&#x…...
学习ASP.NET Core的身份认证(基于Session的身份认证3)
开源博客项目Blog中提供了另一种访问控制方式,其基于自定义类及函数的特性类控制访问权限。本文学习并测试开源博客项目Blog的访问控制方式,测试程序中直接复用开源博客项目Blog中的相关类及接口定义,并在其上调整判断逻辑。 首先是接口A…...
速盾:高防 CDN 可以配置客户端请求超时配置?
在高防 CDN(Content Delivery Network,内容分发网络)的运行管理中,客户端请求超时配置是一项重要的功能设定,它对于优化网络资源分配、保障服务质量以及维护系统稳定性有着关键意义。 一、客户端请求超时配置的概念 …...
DRM(数字权限管理技术)防截屏录屏----ffmpeg安装
提示:ffmpeg安装 文章目录 [TOC](文章目录) 前言一、下载二、配置环境变量三、运行ffmpeg四、文档总结 前言 FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的…...
使用PyQt5开发一个GUI程序的实例演示
一、安装Python 下载安装到这个目录 G:\Python38-32 安装完成有这些工具,后面备用: G:\Python38-32\Scripts\pyrcc5.exe G:\Python38-32\Scripts\pyuic5.exe 二、PyQt环境配置 pip install PyQt5 pip install pyqt5-tools 建议使用国内源,…...
【VUE3】【Naive UI】<NCard> 标签
【Vue3】【Naive UI】 标签 title 属性bordered 属性header-style 和 body-style 属性footer 属性actions 属性hoverable 属性loading 属性size 属性type 属性cover 和 avatar 属性description 属性style 属性 【VUE3】【Naive UI】<NCard> 标签 【VUE3】…...
选择排序之大根堆
大根堆:树的根节点大于左右子树的结点值,这样就能保证每次从树根取的是最大值 灵魂在于HeadAdjust函数,以某节点为树根通过下落调整为大根堆, 建树思想 就是,从最后一个非终端结点开始调整以该结点为根的子树&#x…...
AI的魔力:如何为开源软件注入智慧,开启无限可能
“AI的魔力:如何为开源软件注入智慧,开启无限可能” 引言: 在科技发展的浪潮中,开源软件生态一直扮演着推动创新与共享的重要角色。从Linux到Python,开源项目赋予了开发者全球协作的机会,推动了技术的飞速…...
如何在 VPS 上使用 Git 设置自动部署
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 介绍 要了解 Git 的基本知识以及如何安装,请参考介绍教程。 本文将教你如何在部署应用程序时使用 Git。虽然有许多使用 Gi…...
Linux下的三种 IO 复用
目录 一、Select 1、函数 API 2、使用限制 3、使用 Demo 二、Poll 三、epoll 0、 实现原理 1、函数 API 2、简单代码模板 3、LT/ET 使用过程 (1)LT 水平触发 (2)ET边沿触发 4、使用 Demo 四、参考链接 一、Select 在…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...
