【论文阅读】Federated learning backdoor attack detection with persistence diagram
目的:检测联邦学习环境下,上传上来的模型是不是恶意的。
1、将一个模型转换为|L|个PD,(其中|L|为层数)
如何将每一层转换成一个PD?
为了评估第𝑗层的激活值,我们需要𝑐个输入来获得一组激活值𝔸。
𝔸是一个二维矩阵,每一列,存放一个输入的 各个神经元的激活值
计算神经元p和神经元q的相似度,𝛾_pq越小,p和q越相似。当 𝛾_pq较小,说明在大多数激活单元上,点 p 和点 q 的差异都很小。换句话说,它们的激活模式是相似的,也可以理解为它们在神经网络中对输入的响应非常相似。
减去均值,除以标准差。标准化了激活值的差异,使得不同激活值的尺度差异得到补偿,确保距离度量不受不同尺度的影响。
基于此距离度量,神经元之间的相似度,可以构造 Vietoris-Rips,计算每一层的PD。
2、PD调整

这个图画的我有些困惑,应该一层转换成一个PD,但为什么这里画的 多个层 转换成了一个PD?
那是一层的多个channel
由于PDs是非标准的,即不同持久性类别中的点数不一样; 它在不同的层中也有所不同,因此必须对图表进行标准化。 我们将𝑅^2的出生和死亡时间区域划分为(𝑚 ×𝑚)个网格,并将每个网格中的点相加,形成(𝑚 × 𝑚)矩阵。 然后我们将同一模型的PD转换为的 (𝑚 × 𝑚 × |𝐿|) 张量,其中|𝐿| 是模型中选定层的数量。
3、干净模型和非干净模型 PD的差别

基类模型都是LeNet。LeNet的最后一层是全连接层。
将c个同样的输入(这里的输入应该要确保是干净),输入到两个模型中去,得到全连接层的PD。发现两个PD有明显差异
将后门注入神经网络会导致其神经元出现异常行为,从而导致泛化破坏。 这种破坏导致持久性图中高维特征的出现增加。 因此,后门注入、异常节点行为、泛化能力下降和高维持久性特征的兴起之间建立了逻辑关系,强调了利用 PD 作为检测后门攻击指标的重要性。
4、训练一个检测器
分类器将根据 PD 返回输入模型是恶意还是良性的概率
先训练好一批干净模型和一批恶意模型 ,一个模型会得到一个(𝑚 × 𝑚 × |𝐿|)的向量。分类器的训练集,x为 (𝑚 × 𝑚 × |𝐿|)的向量,y为模型是良性还是恶意的。
构造损失函数,结合PD特征,最小化分类器的损失。
这里的T是 任意选择一个干净模型得到的PD

在正常loss上乘上 拓扑项,但是加不加这个拓扑项效果其实差不多,是为啥?
因为理论上每个batch内的x和t算距离乘loss以后会被平均到batch上的每个sample再反向传播回去,然后如果batch内有随机分布的正负样本的话其实是抵消了loss。
为啥不把batch设置成1呢?
batch设置的太小可能会学不到特征
我们选择联邦学习过程中的第 1 轮到第 5 轮本地模型作为训练数据集,其中 100 个恶意客户端使用不同的后门攻击策略。 我们将通过在图片左上角注入十字标记的 30% 输入训练的模型标记为正训练数据,而那些干净的模型则标记为负训练数据。 然后我们改变目标标签、图案形状、大小和位置来验证我们训练的分类器的泛化能力。
为了评估 FL 任务中使用 PD 进行分类的性能,我们通过以下方式进行了评估:我们将第 1 轮(攻击开始时)到 𝑘 =10 的模型标记为正训练数据样本,代表各种后门攻击类型 。 干净的模型被标记为负训练数据样本。 此外,我们选择了第 1 轮到第k× 2 轮具有不同后门设置的模型作为验证集。
相关文章:
【论文阅读】Federated learning backdoor attack detection with persistence diagram
目的:检测联邦学习环境下,上传上来的模型是不是恶意的。 1、将一个模型转换为|L|个PD,(其中|L|为层数) 如何将每一层转换成一个PD? 为了评估第𝑗层的激活值,我们需要𝑐个输入来获…...
Gooxi Eagle Stream 2U双路通用服务器:性能强劲 灵活扩展 稳定易用
人工智能的高速发展开启了飞轮效应,实施数字化变革成为了企业的一道“抢答题”和“必答题”,而数据已成为现代企业的命脉。以HPC和AI为代表的新业务就像节节攀高的树梢,象征着业务创新和企业成长。但在树梢之下,真正让企业保持成长…...
【计算机网络】实验2:总线型以太网的特性
实验 2:总线型以太网的特性 一、 实验目的 加深对MAC地址,IP地址,ARP协议的理解。 了解总线型以太网的特性(广播,竞争总线,冲突)。 二、 实验环境 • Cisco Packet Tracer 模拟器 三、 实…...
如何在Spark中使用gbdt模型分布式预测
这目录 1 训练gbdt模型2 第三方包python环境打包3 Spark中使用gbdt模型3.1 spark配置文件3.2 主函数main.py 4 spark任务提交 1 训练gbdt模型 我们可以基于lightgbm快速的训练一个gbdt模型,训练相对比较简单,只要把训练样本处理好,几行代码可…...
Qt-5.14.2 example
官方历程很丰富,modbus、串口、chart图表、3D、视频 共享方便使用 Building and Running an Example You can test that your Qt installation is successful by opening an existing example application project. To run an example application on an Android …...
virtualbox给Ubuntu22创建共享文件夹
1.在windows上的操作,创建共享文件夹Share 2.Ubuntu22上的操作,创建共享文件夹LinuxShare 3.在virtualbox虚拟机设置里,设置共享文件夹 共享文件夹路径:选择Windows系统中你需要共享的文件夹 共享文件夹名称:挂载至wi…...
GPT打字机效果—— fetchEventSouce进行sse流式请求
EventStream基本用法 与 WebSocket 不同的是,服务器发送事件是单向的。数据消息只能从服务端到发送到客户端(如用户的浏览器)。这使其成为不需要从客户端往服务器发送消息的情况下的最佳选择。 const evtSource new EventSource(“/api/v1/…...
SpringBoot 在线家具商城:设计考量与实现细节聚焦
第4章 系统设计 市面上设计比较好的系统都有一个共同特征,就是主题鲜明突出。通过对页面简洁清晰的布局,让页面的内容,包括文字语言,或者视频图片等元素可以清晰表达出系统的主题。让来访用户无需花费过多精力和时间找寻需要的内容…...
每日速记10道java面试题07
其他资料: 每日速记10道java面试题01-CSDN博客 每日速记10道java面试题02-CSDN博客 每日速记10道java面试题03-CSDN博客 每日速记10道java面试题04-CSDN博客 每日速记10道java面试题05-CSDN博客 每日速记10道java面试题06-CSDN博客 目录 1.线程的生命周期在j…...
前端面试热门题(二)[html\css\js\node\vue)
Vue 性能优化的方法 Vue 性能优化的方法多种多样,以下是一些常用的策略: 使用v-show替换v-if:v-show是通过CSS控制元素的显示与隐藏,而v-if是通过操作DOM来控制元素的显示与隐藏,频繁操作DOM会导致性能下降。因此&am…...
mvc基础及搭建一个静态网站
mvc asp.net core mvc环境 .net8vscode * Asp.Net Core 基础* .net8* 前辈* .net 4.9 非跨平台版本 VC* 跨平台版本* 1.0* 2.0* 2.1* 3.1* 5* 语言* C#* F# * Visual Basic* 框架* web应用* asp应用* WebFrom* mvc应用* 桌面应用* Winform* WPF* Web Api api应用或者叫服务* …...
AOSP的同步问题
repo sync同步时提示出错: error: .repo/manifests/: contains uncommitted changesRepo command failed due to the following UpdateManifestError errors: contains uncommitted changes解决方法: 1、cd 进入.repo/manifests cd .repo/manifests2、执行如下三…...
HarmonyOS4+NEXT星河版入门与项目实战(23)------实现手机游戏摇杆功能
文章目录 1、案例效果2、案例实现1、代码实现2、代码解释4、总结1、案例效果 2、案例实现 1、代码实现 代码如下(示例): import router from @ohos.router import {ResizeDirection } from @ohos.UiTest import curves...
Logistic Regression(逻辑回归)、Maximum Likelihood Estimatio(最大似然估计)
Logistic Regression(逻辑回归)、Maximum Likelihood Estimatio(最大似然估计) 逻辑回归(Logistic Regression,LR)逻辑回归的基本思想逻辑回归模型逻辑回归的目标最大似然估计优化方法 逻辑回归…...
Vue文字转语音实现
在开发流程中,面对语音支持的需求,小规模语音内容或许可以通过预处理后播放来轻松应对,但当涉及大量语音时,这一方法就显得繁琐低效了。为此,智慧的开发者们总能找到便捷的解决方案——利用Web技术实现语音播放&#x…...
Docker快速部署RabbitMq
在外网服务器拉取镜像 docker pull arm64v8/rabbitmq:3.8.9-management或者拉去我的服务器的 docker pull registry.cn-hangzhou.aliyuncs.com/qiluo-images/linux_arm64_rabbitmq:3.8.9-management重新命名 docker tag registry.cn-hangzhou.aliyuncs.com/qiluo-images/lin…...
glog在vs2022 hello world中使用
准备工作 设置dns为阿里云dns 223.5.5.5,下载cmake,vs2022,git git clone https://github.com/google/glog.git cd glog mkdir build cd build cmake .. 拷贝文件 新建hello world并设置 设置预处理器增加GLOG_USE_GLOG_EXPORT;GLOG_NO_AB…...
[241129] Docker Desktop 4.36 发布:企业级管理功能、WSL 2 增强 | Smile v4.0.0 发布
目录 Docker Desktop 4.36 发布:企业级管理功能、WSL 2 和 ECI 增强Smile v4.0.0 发布!Java 机器学习库迎来重大升级 Docker Desktop 4.36 发布:企业级管理功能、WSL 2 和 ECI 增强 Docker Desktop 4.36 带来了强大的更新,简化了…...
CentOS使用chrony服务进行时间同步源设置脚本
CentOS使用chrony服务进行时间同步源设置脚本 #!/bin/bash# Created: 2024-11-26 # Function: Check and Set OS time sync source to 10.0.11.100 # FileName: centos_set_time_source_to_ad.sh # Creator: Anster # Usage: # curl http://webserver-ip/scripts/centos_set…...
Git仓库迁移到远程仓库(源码、分支、提交)
单个迁移仓库 一、迁移仓库 1.准备工作 > 手动在电脑创建一个临时文件夹,CMD进入该目录 > 远程仓库上创建一个同名的空仓库 2.CMD命令:拉取旧Git仓库(包含提交、分支、源码) $ git clone --bare http://git.domain.cn/…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
