当前位置: 首页 > news >正文

C#结合.NET框架快速构建和部署AI应用

在人工智能(AI)的浪潮中,C#作为一种功能强大且类型安全的编程语言,为AI工程开发提供了坚实的基础。C#结合.NET框架,使得开发者能够快速构建和部署AI应用。本文将通过一个简单的实例,展示如何使用C#进行AI工程开发。

1. 环境准备

在开始之前,确保你的开发环境已经安装了.NET SDK和Visual Studio。这些工具将帮助我们创建和管理C#项目。

2. 项目创建

打开Visual Studio,创建一个新的C#控制台应用程序项目。我们可以命名为“AIDemo”。

3. 引入AI库

在C#中,我们可以使用ML.NET库来进行机器学习任务。ML.NET是一个开源和跨平台的机器学习框架,它允许开发者在.NET应用程序中集成和训练机器学习模型。

通过NuGet包管理器安装ML.NET:

 

Install-Package Microsoft.ML

4. 数据准备

为了演示,我们将使用一个简单的数据集来训练一个分类模型。在这个例子中,我们将使用一个虚构的“鸢尾花”数据集。

 

using Microsoft.ML;
using Microsoft.ML.Data;
using System;
using System.Collections.Generic;
using System.Linq;public class IrisData
{[LoadColumn(0)]public float SepalLength { get; set; }[LoadColumn(1)]public float SepalWidth { get; set; }[LoadColumn(2)]public float PetalLength { get; set; }[LoadColumn(3)]public float PetalWidth { get; set; }// 预测标签[LoadColumn(4)][ColumnName("Label")]public string Species { get; set; }
}

5. 构建和训练模型

接下来,我们将构建一个管道来处理数据,并训练一个模型。

 

var mlContext = new MLContext();// 加载数据
IDataView trainingDataView = mlContext.Data.LoadFromTextFile<IrisData>(path: "iris-data.txt",hasHeader: true,separatorChar: ',');// 构建管道
var pipeline = mlContext.Transforms.Concatenate("Features", "SepalLength", "SepalWidth", "PetalLength", "PetalWidth").Append(mlContext.Transforms.Conversion.MapValueToKey("Label")).Append(mlContext.MulticlassClassification.Trainers.SdcaMaximumEntropy("Label", "Features")).Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabel"));// 训练模型
var model = pipeline.Fit(trainingDataView);

6. 模型评估

在训练模型之后,我们通常需要评估模型的性能。这可以通过将数据集分为训练集和测试集来完成。

 

// 加载测试数据
IDataView testDataView = mlContext.Data.LoadFromTextFile<IrisData>(path: "iris-test-data.txt",hasHeader: true,separatorChar: ',');// 评估模型
var predictions = mlContext.Data.CreateEnumerable<IrisPrediction>(model.Transform(testDataView), reuseRowObject: false);
var metrics = mlContext.MulticlassClassification.Evaluate(predictions, "Label", "PredictedLabel");

7. 使用模型进行预测

最后,我们可以使用训练好的模型来进行预测。

 

var predictionEngine = mlContext.Model.CreatePredictionEngine<IrisData, IrisPrediction>(model);// 创建一个新的鸢尾花数据实例
var sampleData = new IrisData
{SepalLength = 5.1f,SepalWidth = 3.5f,PetalLength = 1.4f,PetalWidth = 0.2f
};// 进行预测
var prediction = predictionEngine.Predict(sampleData);
Console.WriteLine($"Predicted species: {prediction.PredictedLabel}");

8. 结论

通过上述步骤,我们展示了如何使用C#和ML.NET库来构建和训练一个简单的机器学习模型。C#的类型安全和ML.NET的强大功能使得AI工程开发变得简单而高效。随着AI技术的不断发展,C#在AI领域的应用将越来越广泛。

相关文章:

C#结合.NET框架快速构建和部署AI应用

在人工智能&#xff08;AI&#xff09;的浪潮中&#xff0c;C#作为一种功能强大且类型安全的编程语言&#xff0c;为AI工程开发提供了坚实的基础。C#结合.NET框架&#xff0c;使得开发者能够快速构建和部署AI应用。本文将通过一个简单的实例&#xff0c;展示如何使用C#进行AI工…...

题外话 (火影密令)

哥们&#xff01; 玩火影不&#xff01; 村里人全部评论&#xff01; 不评论的忍战李全保底&#xff01; 哥们&#xff01; 密令领了不&#xff01; “1219村里人集合”领了吗&#xff01; 100金币&#xff01; 哥们&#xff01; 我粉丝没人能上影&#xff01; 老舅说的…...

蓝桥杯准备训练(lesson1,c++方向)

前言 报名参加了蓝桥杯&#xff08;c&#xff09;方向的宝子们&#xff0c;今天我将与大家一起努力参赛&#xff0c;后序会与大家分享我的学习情况&#xff0c;我将从最基础的内容开始学习&#xff0c;带大家打好基础&#xff0c;在每节课后都会有练习题&#xff0c;刚开始的练…...

RTDETR融合[ECCV2024]WTConvNeXt中的WTConv模块及相关改进思路

RT-DETR使用教程&#xff1a; RT-DETR使用教程 RT-DETR改进汇总贴&#xff1a;RT-DETR更新汇总贴 《Wavelet Convolutions for Large Receptive Fields》 一、 模块介绍 论文链接&#xff1a;https://arxiv.org/pdf/2407.05848 代码链接&#xff1a;https://github.com/BGU-CS…...

AD7606使用方法

AD7606是一款8通道最高16位200ksps的AD采样芯片。5V单模拟电源供电&#xff0c;真双极性模拟输入可以选择10 V&#xff0c;5 V两种量程。支持串口与并口两种读取方式。 硬件连接方式&#xff1a; 配置引脚 引脚功能 详细说明 OS2 OS1 OS2 过采样率配置 000 1倍过采样率 …...

嵌入式系统应用-LVGL的应用-平衡球游戏 part1

平衡球游戏 part1 1 平衡球游戏的界面设计2 界面设计2.1 背景设计2.2 球的设计2.3 移动球的坐标2.4 用鼠标移动这个球2.5 增加边框规则2.6 效果图2.7 游戏失败重启游戏 3 为小球增加增加动画效果3.1 增加移动效果代码3.2 具体效果图片 平衡球游戏 part2 第二部分文章在这里 1 …...

JVM(四) - JVM 内存结构

目录 一、程序计数器 1.1 作用 1.2 概述 二、虚拟机栈 2.1 概述 2.2 栈的存储单位 2.3 栈运行原理 2.4 栈帧的内部结构 2.4.1. 局部变量表 槽 Slot 2.4.2. 操作数栈 概述 栈顶缓存&#xff08;Top-of-stack-Cashing&#xff09; 2.4.3. 动态链接&#xff08;指向…...

【AI系统】CANN 算子类型

CANN 算子类型 算子是编程和数学中的重要概念&#xff0c;它们是用于执行特定操作的符号或函数&#xff0c;以便处理输入值并生成输出值。本文将会介绍 CANN 算子类型及其在 AI 编程和神经网络中的应用&#xff0c;以及华为 CANN 算子在 AI CPU 的详细架构和开发要求。 算子基…...

VUE脚手架练习

脚手架安装的问题&#xff1a; 1.安装node.js,配置环境变量,cmd输入node -v和npm -v可以看到版本号&#xff08;如果显示不是命令&#xff0c;确认环境变量是否配置成功&#xff0c;记得配置环境变量之后重新打开cmd&#xff0c;再去验证&#xff09; 2.在安装cnmp时&#xf…...

动态艺术:用Python将文字融入GIF动画

文章内容&#xff1a; 在数字媒体的多样化发展中&#xff0c;GIF动画作为一种流行的表达形式&#xff0c;常被用于广告、社交媒体和娱乐。本文通过一个具体的Python编程示例&#xff0c;展示了如何将文字以动态形式融入到GIF动画中&#xff0c;创造出具有视觉冲击力的动态艺术…...

更多开源创新 挑战OpenAI-o1的模型出现和AI个体模拟突破

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…...

VR眼镜可视化编程:开启医疗信息系统新纪元

一、引言 随着科技的飞速发展&#xff0c;VR 可视化编程在医疗信息系统中的应用正逐渐成为医疗领域的新趋势。它不仅为医疗教育、手术培训、疼痛管理等方面带来了新的机遇&#xff0c;还在提升患者体验、推动医疗信息系统智能化等方面发挥着重要作用。 在当今医疗领域&#xf…...

Ubuntu访问简书403

日期 二〇二四年十二月三日 操作系统 Ubuntu 22.04 浏览器 firefox 问题 打开简书提示403. 原因 简书不认带ubuntu的UA 解决办法 - 浏览器地址栏输入 about:config。接受风险 - 搜索 general.useragent.override&#xff0c;无则新建 string类型。 - 查看浏览器 UA&…...

SQL高级应用——索引与视图

数据库优化离不开索引和视图的合理使用。索引用于加速查询性能&#xff0c;而视图则在逻辑层简化了查询逻辑&#xff0c;提高了可维护性。本文将从以下几个方面详细探讨索引与视图的概念、应用场景、优化技巧以及最新的技术发展&#xff1a; 1. 索引类型与应用场景 索引是数据…...

docker部署文件编写(还未尝试)

docker文件启动mysql 要使用Docker启动MySQL&#xff0c;您可以通过以下步骤编写Dockerfile&#xff1a; 选择一个基础镜像&#xff0c;通常是一个包含了MySQL的Linux发行版。 设置环境变量&#xff0c;如MySQL的root密码等。 在容器启动时运行MySQL服务。 以下是一个简单…...

缓存与数据库数据一致性 详解

缓存与数据库数据一致性详解 在分布式系统中&#xff0c;缓存&#xff08;如 Redis、Memcached&#xff09;与数据库&#xff08;如 MySQL、PostgreSQL&#xff09;一起使用是提高系统性能的常用方法。然而&#xff0c;缓存与数据库可能因更新时序、操作失误等原因出现数据不一…...

每日计划-1203

1. 完成 236. 二叉树的最近公共祖先 ​ /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode(int x) : val(x), left(NULL), right(NULL) {}* };*/ class Solution {public:TreeNode* lowe…...

HTML5动漫主题网站——天空之城 10页 html+css+设计报告成品项目模版

&#x1f4c2;文章目录 一、&#x1f4d4;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站演示 五、⚙️网站代码 &#x1f9f1;HTML结构代码 &#x1f492;CSS样式代码 六、&#x1f527;完整源码下载 七、&#x1f4e3;更多 一、&#…...

分布式会话 详解

分布式会话详解 在分布式系统中&#xff0c;用户的会话状态需要在多个服务器或节点之间共享或存储。分布式会话指的是在这种场景下如何管理和存储会话&#xff0c;以便在多个节点上都能正确识别用户状态&#xff0c;从而保证用户体验的一致性。 1. 为什么需要分布式会话 在单…...

探索仓颉编程语言:官网上线,在线体验与版本下载全面启航

文章目录 每日一句正能量前言什么是仓颉编程语言仓颉编程语言的来历如何使用仓颉编程语言在线版本版本下载后记 每日一句正能量 当你被孤独感驱使着去寻找远离孤独的方法时&#xff0c;会处于一种非常可怕的状态。因为无法和自己相处的人也很难和别人相处&#xff0c;无法和别人…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...