当前位置: 首页 > news >正文

营销网站开发方案/汕头网页搜索排名提升

营销网站开发方案,汕头网页搜索排名提升,网站建设中一般要多久,广州易网外贸网站建设递归 递归是函数调用自身的一种编程技术。在C语言中,递归的实现会占用内存栈(Call Stack),每次递归调用都会在栈上分配一个新的 “栈帧(Stack Frame)”,用于存储本次调用的函数局部变量、返回地…

递归

递归是函数调用自身的一种编程技术。在C语言中,递归的实现会占用内存栈(Call Stack),每次递归调用都会在栈上分配一个新的 “栈帧(Stack Frame)”,用于存储本次调用的函数局部变量、返回地址、参数等信息。简单点说:自己调自己。

顾名思义:

例子: fun(void){//一定要有结束条件 fun()}例子: 从 1 + 2 + 3 + ... + 100 
函数递归的缺陷: 非常耗内存 不建议在函数中使用递归,如果将栈的内存耗尽,程序执行会出现报错:Segmetation fault (core dumped)

那么,在递归的过程中到底发生了什么事情呢? 以下将通过文字解析和图示说明递归对内存的占用情况,让大家直观的看见递归的过程。

栈帧(Stack Frame)的组成

每次函数调用(包括递归调用),都会在内存栈区中分配一个栈帧,主要用于存储以下内容:

  1. 函数参数:函数调用时传入的参数。
  2. 返回地址:函数执行完后需要返回到调用函数的位置,返回地址存储在栈帧中。
  3. 局部变量:函数内部定义的局部变量。
  4. 其他信息:如寄存器保存、栈指针、帧指针等(具体取决于编译器和硬件架构)。

递归调用时,每次调用都会创建一个新的栈帧,压入到内存栈中。递归结束时,函数逐层返回,栈帧依次弹出释放。

递归的内存占用过程

代码一:(上述示例)
使用递归的方式从 1 + 2 + 3 + … + 100 :
递归分析
递归代码
代码图示
下面举一个更复杂的例子。
代码二:

#include <stdio.h>void recursiveFunction(int n) {if (n == 0) {printf("Recursion ends.\n");return;}printf("Entering recursion: n = %d\n", n);// 递归调用recursiveFunction(n - 1);printf("Exiting recursion: n = %d\n", n);
}int main() {recursiveFunction(3);return 0;
}

执行过程分析:

  1. 初次调用 recursiveFunction(3),程序会在栈中分配一个栈帧,用于存储 n = 3 的值。
  2. 函数内部调用 recursiveFunction(2),再次分配栈帧,存储 n = 2
  3. 如此递归,直到 n = 0,递归结束,开始逐层返回,栈帧依次弹出。
图示解析(递归占用内存的变化)

假设每个栈帧包含以下内容:

  • 函数参数 n。
  • 函数的返回地址。
  • 函数内部的局部变量(假设没有其他局部变量)。

调用栈变化过程

1. 初始状态(main 函数调用 recursiveFunction(3)):

|--------------------|
|  main() Frame      |  <-- 栈顶
|--------------------|

2. 第一次递归调用(recursiveFunction(3)):

|--------------------|
|  recursiveFunction |
|  参数: n = 3       |
|  返回地址: main()  |
|--------------------|
|  main() Frame      |
|--------------------|

3. 第二次递归调用(recursiveFunction(2)):

|--------------------|
|  recursiveFunction |
|  参数: n = 2       |
|  返回地址: recursiveFunction(3) |
|--------------------|
|  recursiveFunction |
|  参数: n = 3       |
|  返回地址: main()  |
|--------------------|
|  main() Frame      |
|--------------------|

4. 第三次递归调用(recursiveFunction(1)):

|--------------------|
|  recursiveFunction |
|  参数: n = 1       |
|  返回地址: recursiveFunction(2) |
|--------------------|
|  recursiveFunction |
|  参数: n = 2       |
|  返回地址: recursiveFunction(3) |
|--------------------|
|  recursiveFunction |
|  参数: n = 3       |
|  返回地址: main()  |
|--------------------|
|  main() Frame      |
|--------------------|

5. 第四次递归调用(recursiveFunction(0)):

|--------------------|
|  recursiveFunction |
|  参数: n = 0       |
|  返回地址: recursiveFunction(1) |
|--------------------|
|  recursiveFunction |
|  参数: n = 1       |
|  返回地址: recursiveFunction(2) |
|--------------------|
|  recursiveFunction |
|  参数: n = 2       |
|  返回地址: recursiveFunction(3) |
|--------------------|
|  recursiveFunction |
|  参数: n = 3       |
|  返回地址: main()  |
|--------------------|
|  main() Frame      |
|--------------------|

6. 递归返回(n = 0 开始返回):

  • 栈帧逐层弹出,释放内存,最终只剩下 main() 的栈帧。
递归的内存占用与栈深度

递归深度与内存占用的关系

  • 每次递归调用会分配一个新的栈帧,因此递归深度越大,占用的栈内存越多。
  • 如果递归深度过大,可能导致栈溢出(Stack Overflow)

栈溢出代码

#include <stdio.h>void recursiveFunction(int n) {printf("n = %d\n", n);recursiveFunction(n + 1);  // 无限递归
}int main() {recursiveFunction(1);return 0;
}

运行上述程序会导致栈溢出,因为递归调用的栈帧无限增长,超过了栈的容量。

ulimit -a // 自行查看 stack size 栈的内存空间大小,开发过程中注意栈的使用量
优化递归的内存占用

1. 尾递归优化

  • 尾递归是指递归调用发生在函数的最后一步,编译器可以优化为循环,避免创建多个栈帧。
    代码:
#include <stdio.h>void tailRecursiveFunction(int n, int result) {if (n == 0) {printf("Result: %d\n", result);return;}tailRecursiveFunction(n - 1, result + n);
}int main() {tailRecursiveFunction(5, 0);  // 计算 1+2+3+4+5return 0;
}
  • 尾递归可以被优化为循环,避免栈溢出。

2. 转换为迭代

  • 如果递归深度过大,可以将递归转换为迭代,用循环替代递归。
    代码:
#include <stdio.h>void iterativeFunction(int n) {while (n > 0) {printf("n = %d\n", n);n--;}
}int main() {iterativeFunction(5);return 0;
}

综上。便是递归的内存占用过程。递归虽然简单优雅,但需要仔细处理内存占用和递归深度问题,特别是在资源受限的嵌入式系统中需要特别注意内存空间的使用情况。

  • 内存占用的特点:
    • 每次递归调用占用一个栈帧,存储函数参数、返回地址、局部变量等。
    • 栈帧数量与递归深度成正比。
  • 图示说明:
    • 栈的内存布局是递归调用的直观体现,栈帧逐层压入和弹出的过程展示了递归的内存管理。
  • 优化建议:
    • 使用尾递归或将递归转换为迭代以避免栈溢出。
    • 控制递归深度,避免过深的递归调用。

以上。仅供学习与分享交流,请勿用于商业用途!转载需提前说明。

我是一个十分热爱技术的程序员,希望这篇文章能够对您有帮助,也希望认识更多热爱程序开发的小伙伴。
感谢!

相关文章:

【C语言】递归的内存占用过程

递归 递归是函数调用自身的一种编程技术。在C语言中&#xff0c;递归的实现会占用内存栈&#xff08;Call Stack&#xff09;&#xff0c;每次递归调用都会在栈上分配一个新的 “栈帧&#xff08;Stack Frame&#xff09;”&#xff0c;用于存储本次调用的函数局部变量、返回地…...

365天深度学习训练营-第P6周:VGG-16算法-Pytorch实现人脸识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 文为「365天深度学习训练营」内部文章 参考本文所写记录性文章&#xff0c;请在文章开头带上「&#x1f449;声明」 &#x1f37a;要求&#xff1a; 保存训练过…...

企业AI助理在数据分析与决策中扮演的角色

在当今这个数据驱动的时代&#xff0c;企业每天都需要处理和分析大量的数据&#xff0c;以支持其业务决策。然而&#xff0c;面对如此庞大的数据量&#xff0c;传统的数据分析方法已经显得力不从心。幸运的是&#xff0c;随着人工智能&#xff08;AI&#xff09;技术的不断发展…...

洛谷 B2029:大象喝水 ← 圆柱体体积

【题目来源】https://www.luogu.com.cn/problem/B2029【题目描述】 一只大象口渴了&#xff0c;要喝 20 升水才能解渴&#xff0c;但现在只有一个深 h 厘米&#xff0c;底面半径为 r 厘米的小圆桶 &#xff08;h 和 r 都是整数&#xff09;。问大象至少要喝多少桶水才会解渴。 …...

go每日一题:mock打桩、defer、recovery、panic的调用顺序

题目一&#xff1a;单元测试中使用—打桩 打桩概念&#xff1a;使用A替换 原函数B&#xff0c;那么A就是打桩函数打桩原理&#xff1a;运行时&#xff0c;通过一个包&#xff0c;将内存中函数的地址替换为桩函数的地址打桩操作&#xff1a;利用Patch&#xff08;&#xff09;函…...

STM32F103 HSE时钟倍频以及设置频率函数(新手向,本人也是新手)

HSE_SetSysCLK是野火教程里的,不懂的去这 16-RCC&#xff08;第3节&#xff09;使用HSE配置系统时钟并使用MCO输出监控系统时钟_哔哩哔哩_bilibili HSE_AutoSetHSE的算法部分是自己写的,用了一个转接数组。C语言不支持bool所以自己定义了一个boolK代替bool。 AutoHSE.h: /**…...

renderExtraFooter 添加本周,本月,本年

在 Ant Design Vue 中&#xff0c;a-date-picker 组件提供了一个 renderExtraFooter 属性&#xff0c;可以用来渲染额外的页脚内容。你可以利用这个属性来添加“本周”、“本月”和“本年”的按钮。下面是如何在 Vue 2 项目中实现这一功能的具体步骤&#xff1a; 1.确保安装了…...

SprinBoot整合KafKa的使用(详解)

前言 1. 高吞吐量&#xff08;High Throughput&#xff09; Kafka 设计的一个核心特性是高吞吐量。它能够每秒处理百万级别的消息&#xff0c;适合需要高频次、低延迟消息传递的场景。即使在大规模分布式环境下&#xff0c;它也能保持很高的吞吐量和性能&#xff0c;支持低延…...

【机器学习】CatBoost 模型实践:回归与分类的全流程解析

一. 引言 本篇博客首发于掘金 https://juejin.cn/post/7441027173430018067。 PS&#xff1a;转载自己的文章也算原创吧。 在机器学习领域&#xff0c;CatBoost 是一款强大的梯度提升框架&#xff0c;特别适合处理带有类别特征的数据。本篇博客以脱敏后的保险数据集为例&#x…...

PyTorch 实现动态输入

使用 PyTorch 实现动态输入&#xff1a;支持训练和推理输入维度不一致的 CNN 和 LSTM/GRU 模型 在深度学习中&#xff0c;处理不同大小的输入数据是一个常见的挑战。许多实际应用需要模型能够灵活地处理可变长度的输入。本文将介绍如何使用 PyTorch 实现支持动态输入的 CNN 和…...

【Linux相关】查看conda路径和conda和cudnn版本、安装cudnn、cuDNN无需登录官方下载链接

【Linux相关】 查看conda路径和conda和cudnn版本 安装cudnn cuDNN无需登录官方下载链接 文章目录 1. 查看信息1.1 查看 Conda 路径1.2 查看 Conda 版本1.3 查看 cuDNN 版本1.4 总结 2. 安装cudnn2.1 安装cudnn步骤2.2 cuDNN无需登录官方下载链接 1. 查看信息 查看Conda 路径、C…...

基于Java Springboot环境保护生活App且微信小程序

一、作品包含 源码数据库设计文档万字PPT全套环境和工具资源部署教程 二、项目技术 前端技术&#xff1a;Html、Css、Js、Vue、Element-ui 数据库&#xff1a;MySQL 后端技术&#xff1a;Java、Spring Boot、MyBatis 三、运行环境 开发工具&#xff1a;IDEA/eclipse 微信…...

简单的springboot使用sse功能

什么是sse? 1、SSE 是Server-Sent Events&#xff08;服务器发送事件&#xff09; 2、SSE是一种允许服务器主动向客户端推送实时更新的技术。 3、它基于HTTP协议&#xff0c;并使用了其长连接特性&#xff0c;在客户端与服务器之间建立一条持久化的连接。 通过这条连接&am…...

【服务器问题】xshell 登录远程服务器卡住( 而 vscode 直接登录不上)

打开 xshell ssh 登录远程服务器&#xff1a;卡在下面这里&#xff0c;迟迟不继续 当 SSH 连接卡在 Connection established. 之后&#xff0c;但没有显示远程终端提示符时&#xff0c;这通常意味着连接已经成功建立&#xff0c;说明不是网络连接和服务器连接问题&#xff0c;…...

AI×5G 市场前瞻及应用现状

本文为《5GAI时代&#xff1a;生活方式和市场的裂变》一书读后总结及研究。 本书的上架建议是“经营”&#xff0c;内容也更偏向于市场分析。书出版于2021年&#xff0c;现在是2024年&#xff0c;可以收集整理一些例子&#xff0c;看看书里的前瞻性5GAI应用预测&#xff0c;到…...

利用 Redis 与 Lua 脚本解决秒杀系统中的高并发与库存超卖问题

1. 前言 1.1 秒杀系统中的库存超卖问题 在电商平台上&#xff0c;秒杀活动是吸引用户参与并提升销量的一种常见方式。秒杀通常会以极低的价格限量出售某些商品&#xff0c;目的是制造紧迫感&#xff0c;吸引大量用户参与。然而&#xff0c;这种活动的特殊性也带来了许多技术挑…...

【MySQL】创建数据库、用户和密码

创建数据库、用户和密码参考sql语句 drop database if exists demoshop; drop user if exists demoshop%; -- 支持emoji&#xff1a;需要mysql数据库参数&#xff1a; character_set_serverutf8mb4 create database demoshop default character set utf8mb4 collate utf8mb4_un…...

leetcode hot100【Leetcode 72.编辑距离】java实现

Leetcode 72.编辑距离 题目描述 给定两个单词 word1 和 word2&#xff0c;返回将 word1 转换为 word2 所使用的最少操作数。 你可以对一个单词执行以下三种操作之一&#xff1a; 插入一个字符删除一个字符替换一个字符 示例 1: 输入: word1 "horse", word2 &…...

腾讯阅文集团Java后端开发面试题及参考答案

Java 的基本数据类型有哪些?Byte 的数值范围是多少? Java 的基本数据类型共有 8 种,可分为 4 类: 整数类型:包括 byte、short、int 和 long。byte 占 1 个字节,其数值范围是 - 128 到 127,用于表示较小范围的整数,节省内存空间,在处理一些底层的字节流数据或对内存要求…...

protobuf实现Hbase数据压缩

目录 前置HBase数据压缩效果获取数据(反序列化) 前置 安装说明 使用说明 HBaseDDL和DML操作 HBase数据压缩 问题 在上文的datain中原文 每次写入数据会写入4个单元格的内容&#xff0c;现在希望能对其进行筛减&#xff0c;合并成1格&#xff0c;减少存储空间&#xff08;序列…...

论文阅读之方法: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris

The Tabula Muris Consortium., Overall coordination., Logistical coordination. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018). 论文地址&#xff1a;https://doi.org/10.1038/s41586-018-0590-4 代码地址…...

PHP语法学习(第三天)

老规矩&#xff0c;先回顾一下昨天学习的内容 PHP语法学习(第二天) 主要学习了PHP变量、变量的作用域、以及参数作用域。 今天由Tom来打开新的篇章 文章目录 echo 和 print 区别PHP echo 语句实例 PHP print 语句实例 PHP 数组创建数组利用array() 函数 数组的类型索引数组关联…...

PostgreSQL添加PostGIS扩展和存储坐标

一、安装 1、PostGIS安装&#xff1a;Getting Started | PostGIS 2、安装好后&#xff0c;执行下面sql CREATE EXTENSION postgis;SELECT PostGIS_Full_Version(); 二、使用 PostGIS文档&#xff1a;PostGIS 简介 — Introduction to PostGIS 建表&#xff1a; CREATE TAB…...

Flink四大基石之State(状态) 的使用详解

目录 一、有状态计算与无状态计算 &#xff08;一&#xff09;概念差异 &#xff08;二&#xff09;应用场景 二、有状态计算中的状态分类 &#xff08;一&#xff09;托管状态&#xff08;Managed State&#xff09;与原生状态&#xff08;Raw State&#xff09; 两者的…...

Linux中dos2unix详解

dos2unix 是一个用于将文本文件从DOS/Windows格式转换为Unix/Linux格式的工具。在不同的操作系统中&#xff0c;文本文件中的换行符表示方式是不一样的。具体来说&#xff1a; 在DOS和Windows系统中&#xff0c;换行由两个字符组成&#xff1a;回车&#xff08;Carriage Retur…...

MySQL MVCC 介绍

MVCC&#xff08;Multi-Version Concurrency Control&#xff09;是一种并发控制机制&#xff0c;用于在多个并发事务同时读写数据库时保持数据的一致性和隔离性。MVCC通过在每个数据行上维护多个版本的数据来实现。当一个事务要对数据库中的数据进行修改时&#xff0c;MVCC不会…...

Linux篇之日志管理工具Logrotate介绍并结合crontab使用

1. Logrotate介绍 logrotate 是一个用于管理和轮换日志文件的工具,通常用于 Unix 和 Linux 系统。它可以自动化日志文件的轮换、压缩、删除和邮寄等操作,确保日志文件不会无限制地增长,占用过多的磁盘空间。 2. 主要功能 轮换:定期将日志文件移动到备份目录,并生成新的…...

Vulnhub靶场 Matrix-Breakout: 2 Morpheus 练习

目录 0x00 准备0x01 主机信息收集0x02 站点信息收集0x03 漏洞查找与利用1. 文件上传2. 提权 0x04 总结 0x00 准备 下载连接&#xff1a;https://download.vulnhub.com/matrix-breakout/matrix-breakout-2-morpheus.ova 介绍&#xff1a; This is the second in the Matrix-Br…...

秒杀项目 超卖问题 详解

秒杀项目中的超卖问题详解 秒杀场景是一种高并发场景&#xff0c;用户在短时间内大量涌入抢购有限的商品。超卖问题指的是由于系统设计不合理&#xff0c;导致实际售出的商品数量超过库存数量。 1. 为什么会出现超卖问题&#xff1f; 超卖问题通常由以下原因引发&#xff1a;…...

Linux系统编程之进程控制

概述 在Linux系统中&#xff0c;创建一个新的进程后&#xff0c;如何对该进程进行有效的控制&#xff0c;是一项非常重要的操作。控制进程状态的操作主要包括&#xff1a;进程的执行、进程的等待、进程的终止等。下面&#xff0c;我们将逐个进行介绍。 进程的执行 创建进程后&a…...