当前位置: 首页 > news >正文

Sarcomere仿人灵巧手ARTUS,20个自由度拓宽机器人作业边界

Sarcomere Dynamics 是一家深度技术先驱,通过开发和商业化仿人机械来改变机器人行业。专注于为科研人员,系统集成商和制造商提供更实惠、更轻便且更灵活的末端执行器替代品。凭借创新的致动器技术,创造了一款紧凑、轻便且非常坚固的机械手Artus,在不牺牲握力的情况下,拥有可与人类性能相媲美的灵巧性。使机器人能够自动执行以前被认为过于复杂的复杂任务,解决现有解决方案的局限性,将为自主机器人行业树立效率、灵活性和精度的新方向。

ARTUS五指灵巧手的突出产品特点

精准复刻人类手部动作:

ARTUS 五指灵巧手的设计精妙地契合人类手部动作范式。其装配有 20 个匠心独运的关节,当中 16 个独立自由度让它在操作期间具备丰富多元的动作变换潜能,能够精准契合各类物体的抓取诉求。而 ARTUS Lite 五指灵巧手拥有的 4 个欠驱动自由度,显著提升了抓握的适配性,使其可以依据物体的形状与质地自主调适抓握形式,有力保障稳定抓取。不管是精细作业还是复杂物体的处置,Sarcomere 的 ARTUS Lite 五指灵巧手皆可彰显出卓越的灵活性与精准度。

ARTUS五指灵巧手

前沿技术融合

精密机械传动技术:运用先进的机械传动设计方案,切实确保各关节运动的精确性与稳定性。此设计显著提高了手指运动的精准程度,并且降低了能耗,促使 Sarcomere 的 ARTUS Lite 五指灵巧手的手指能够快速、顺畅地回应操作指令,于高速作业情境下尤为突显优势,有效增进了整体的工作效率。

先进传感技术:Sarcomere 的 ARTUS Lite 五指灵巧手内建高性能传感器,能够实时采集手指关节位置与受力数据,为精准操作给予重要的数据支撑。凭借这些数据,ARTUS Lite 五指灵巧手得以依据物体特征动态地调节抓握力度与姿态,切实防止因用力失当而致使物品受损,维护操作过程的安全性与稳定性。

智能控制技术:搭载强劲的智能控制系统,可迅速处理传感器所反馈的数据,并按照预设算法以及即时信息作出恰当决策。这让 Sarcomere 的 ARTUS Lite 五指灵巧手在复杂的工作环境里具备较强的自主性与适应性,能够依据不同任务要求灵活地变更操作策略,达成高效且智能的工作流程。

Sarcomere 五指灵巧手之ARTUS Lite应用场景:

工业制造领域:于汽车、电子设备制造等行业之中,ARTUS Lite 五指灵巧手在零部件组装、检测以及包装流程里发挥着积极作用。在汽车发动机组装线上,其能够精准地抓取小型零件并完成精确安装;在电子产品生产环节,针对精密零件的操作更是游刃有余,有力地提升了生产效率与产品质量。

ARTUS五指灵巧手

物流仓储方面:契合物流中心与仓库的作业需求,它可以快速地识别并抓取各类货物,实现精准放置,达成自动化操作流程,从而加快物流处理速度、提高准确性,并减少人力成本的投入。

农业自动化进程:应用于农产品采摘与分拣工作时,其手指动作灵活,能够轻柔地抓取果实而不造成损伤,并且依据果实的特性进行精准分类,极大地提升了农业生产的自动化水平与效率。

ARTUS五指灵巧手

科研实验领域:为科研工作提供了高精度、具备多自由度的操作工具,同时还配备有丰富的 ROS 和遥操作资源包,助力科研探索。

特殊作业场景:在应急救援、核电应用等特殊领域,它可作为远程操作的得力工具,在危险环境下执行任务,例如核设施的维护工作;在温室、回收设施等场所同样能够实现自动化作业,有效提升效率并增强安全性。

相关文章:

Sarcomere仿人灵巧手ARTUS,20个自由度拓宽机器人作业边界

Sarcomere Dynamics 是一家深度技术先驱,通过开发和商业化仿人机械来改变机器人行业。专注于为科研人员,系统集成商和制造商提供更实惠、更轻便且更灵活的末端执行器替代品。凭借创新的致动器技术,创造了一款紧凑、轻便且非常坚固的机械手Art…...

Django drf 基于serializers 快速使用

1. 安装: pip install djangorestframework 2. 添加rest_framework到您的INSTALLED_APPS设置。 settings.pyINSTALLED_APPS [...rest_framework, ] 3. 定义模型 models.pyfrom django.db import modelsclass BookModel(models.Model):name models.CharField(max_length64)…...

pycharm集成环境中关于安装sklearn库报错问题分析及解决

在输入pip install sklearn后,出现如下提示: pip install sklearn Collecting sklearn Using cached sklearn-0.0.post12.tar.gz (2.6 kB) Installing build dependencies ... done Getting requirements to build wheel ... error error: subprocess-…...

AI - 浅聊一下基于LangChain的AI Agent

AI - 浅聊一下基于LangChain的AI Agent 大家好,今天我们来聊聊一个很有意思的主题: AI Agent ,就是目前非常流行的所谓的AI智能体。AI的发展日新月异,都2024年末了,如果此时小伙伴们对这个非常火的概念还不清楚的话&a…...

《【Linux】深入理解进程管理与 fork 系统调用的实现原理》

一、引言 在 Linux 操作系统中,进程管理是核心功能之一。进程是操作系统进行资源分配和调度的基本单位。理解进程管理的原理以及 fork 系统调用的实现对于深入掌握 Linux 系统的运行机制至关重要。本文将深入探讨 Linux 中的进程管理以及 fork 系统调用的实现原理&a…...

docker-compose部署skywalking 8.1.0

一、下载镜像 #注意 skywalking-oap-server和skywalking java agent版本强关联,版本需要保持一致性 docker pull elasticsearch:7.9.0 docker pull apache/skywalking-oap-server:8.1.0-es7 docker pull apache/skywalking-ui:8.1.0二、部署文件docker-compose.yam…...

AI 总结的的 AI 学习路线

一、入门阶段:数学基础与编程语言 数学基础 线性代数 当年白纸黑字推演, 都是泪啊,草稿本都用了一卷。 学习向量、矩阵的基本概念,包括向量的加法、减法、点积和叉积,矩阵的乘法、转置等运算。例如,在计算…...

离散傅里叶级数(DFS)详解

1. 引言 离散傅里叶级数(Discrete Fourier Series, DFS)是信号处理领域中一项基础且重要的数学工具,用于分析和处理周期性的离散信号。它通过将离散时间信号表示为一组正弦和余弦的和,从而使得信号在频域上得到更清晰的描述。与连…...

Java 类加载机制详解

🧑 博主简介:CSDN博客专家,历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,…...

1.1 Beginner Level学习之“编写简单的发布服务器和订阅服务器”(第十一节)

学习大纲: 1. 编写发布服务器节点 在 ROS 中,节点是连接到 ROS 网络的可执行文件。我创建了一个名为 talker 的发布者节点,它会向一个主题 chatter 不断发送消息。 首先,进入你的工作包 beginner_tutorials(假设你已…...

AIQuora:开启论文写作新篇章

在这个信息爆炸的时代,学术写作已成为研究者不可或缺的技能。然而,面对繁重的写作任务,许多学者和学生常常感到力不从心。AIQuora,一个专业的文理工科论文智能写作助手,以其免费开题报告生成功能,为学术写作…...

【C语言】库函数常见的陷阱与缺陷(1):字符串处理函数

目录 一、 strcpy 函数 1.1. 功能与常见用法 1.2. 陷阱与缺陷 1.3. 安全替代 1.4. 代码示例 二、strcat 函数 2.1. 功能与常见用法 2.2. 陷阱与缺陷 2.3. 安全替代 2.4. 代码示例 三、strcmp 函数 3.1. 功能与常见用法 3.2. 陷阱与缺陷 3.3. 安全替代 3.4. 代…...

Mysql索引原理及优化——岁月云实战笔记

根据Mysql索引原理及优化这个博主的视频学习,对现在的岁月云项目中mysql进行优化,我要向这个博主致敬,之前应用居多,理论所知甚少,于是将学习到东西,应用下来,看看是否有好的改观。 1 索引原理…...

AGCRN论文解读

一、创新点 传统GCN只能基于静态预定义图建模全局共享模式,而AGCRN通过两种GCN的增强模块(NAPL、DAGG)实现了更精细的节点特性学习和图结构生成。 1 节点自适应参数学习模块(NAPL) 传统GCN通过共享参数(权重…...

Python机器学习笔记(五、决策树集成)

集成(ensemble)是合并多个机器学习模型来构建更强大模型的方法。这里主要学习两种集成模型:一是随机森林(random forest);二是梯度提升决策树(gradient boosted decision tree)。 1…...

Kafka单机及集群部署及基础命令

目录 一、 Kafka介绍1、kafka定义2、传统消息队列应用场景3、kafka特点和优势4、kafka角色介绍5、分区和副本的优势6、kafka 写入消息的流程 二、Kafka单机部署1、基础环境2、iptables -L -n配置3、下载并解压kafka部署包至/usr/local/目录4、修改server.properties5、修改/etc…...

如何使用 Python 实现链表的反转?

在Python中实现链表的反转可以通过几种不同的方法。这里,我将向你展示如何使用迭代和递归两种方式来反转链表。 1. 迭代方法 迭代方法是通过遍历链表,逐个节点地改变其指向来实现反转的。 class ListNode: def __init__(self, val0, nextNone): …...

react跳转传参的方法

传参 首先下载命令行 npm react-router-dom 然后引入此代码 前面跳转的是页面 后面传的是你需要传的参数接参 引入此方法 useLocation():这是 react-router-dom 提供的一个钩子,用于获取当前路由的位置对象location.state:这是从其他页面传…...

Scala:正则表达式

object test03 {//正则表达式def main(args: Array[String]): Unit {//定义一个正则表达式//1.[ab]:表示匹配一个字符,或者是a,或者是b//2.[a-z]:表示从a到z的26个字母中的任意一个//3.[A-Z]:表示从A到Z的26个字母中的任意一个//4.[0-9]:表示从0到9的10…...

【数电】常见时序逻辑电路设计和分析

本文目的:一是对真题常考题型总结,二是对常见时序电路设计方法进行归纳,给后面看这个文档的人留有一点有价值的东西。 1.不同模计数器设计 2.序列信号产生和检测电路 2.1序列信号产生电路 2.1.1设计思路 主要设计思路有三种 1&#xff09…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

如何在网页里填写 PDF 表格?

有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据&#xff…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲,何谓六部曲呢? 其实啊,数据分析没那么难,只要掌握了下面这六个步骤,也就是数据分析六部曲,就算你是个啥都不懂的小白,也能慢慢上手做数据分析啦。 第一…...

Redis上篇--知识点总结

Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...