超标量处理器设计笔记(5)虚拟存储器、地址转换、page fault
虚拟存储器
- 概述
- 地址转换
- 单级页表
- 多级页表
- 案例
- 最好情况:虚拟地址是连续的
- 最差情况:每个第二级 PT 都装有一项
- 增加级数
- Page Fault
- 程序保护
概述
当程序比物理内存空间更大时,无法全部装在物理内存中,需要对程序进行切片
虚拟存储器优点(需要操作系统调度)
- 将当前使用的部分程序放到物理存储器中,其余部分放在下一级存储器里。不需要切割程序
- 如果同时运行多个程序,不需要限制每个程序在规定的地址空间
- 保护各程序的内容不会互相改写
- 将相同功能的程序可以映射到相同位置
虚拟内存的地址范围
- 32 微处理器 0 ~ 0xFFFF FFFF 4GB
- 64 微处理器 0 ~ 0xFFFF FFFF FFFF FFFF
物理存储器的地址范围
- 32 微处理器 0 ~ 0xFFF FFFF 256MB (通常是 256MB,最大 4GB 和虚拟存储器内存大小一致)
- 64 微处理器 0 ~ 0xFFFF FFFF FFFF FFFF
现在 64 位计算机,既可以用 8GB 、16GB、32GB 内存。
没有使用虚拟存储器的系统:

使用虚拟存储器的系统:

地址转换
虚拟地址空间的划分以 页 为单位,典型大小为 4KB
物理地址的划分以 frame 为单位,典型大小同样为 4KB,
程序开始执行时,每次从硬盘搬运到内存时,搬运单位为页
VA[11:0] 表示页内的位置,page offset
VPN (visual page number):VA 剩余部分用来表示哪个页
PA[11:0] 表示 frame 内的位置,frame offset
PFN (physical frame number):PA 剩余部分用来来表示哪个 Frame
当 页 大小和 frame 大小一样时,page offset 和 frame offset 不需要变化
页面大的优缺点
- 降低页面替换的频率
- 用不到这么大页时,会造成一个页内的很多空间被浪费了
- 替换的速度和成本更高
案例:
16 位处理器,其 Visual Memory Space 为 64K (2^16 = 2^4 * 2^12 = 16 * 4k),16 个页
Physical Memory Space 为 32K (2^3 * 2^12 = 8 * 4K),8 个 Frame
现在有一个程序,大于 32KB,所以其中的 32KB 部分映射到 Physical Memory Space,剩余部分映射到 Disk 中
例子 1:
Load R2, 5[R1] // 假设R1 = 0
得到的虚拟地址为 R1 + 5= 5,所以在 Visual Memory Space 中是 0~4K,Physical Memory Space 中 12~16K,具体是 12k + 5。
例子 2:
Load R2, 0[R1] // 假设R1 = 32780 32~36K之间
得到的虚拟地址为 R1 = 32780,所以在 Visual Memory Space 中是 32~36K ,Physical Memory Space 中没有,故 MMU 会产生 Page Fault,从 disk 中取出一个 Frame 替代原 Physical Memory Space 最少被使用的。这样就可以取到数据

单级页表
PT (Page Table) 页表:VPN 到 PFN 的转换表
页表存放在物理内存中
- 虚拟地址来寻址,页表寻址的内容是虚拟地址对应的物理地址
- 页表寄存器 (Page table register PTR):指示页表在物理存储器的位置
- 每次操作系统将程序调入到物理存储器时,更新 PRT
通过 VA[31:12] 索引到 Page Table Register 中的对应的项,由此获得 PFN
Page Offset 由于页面大小和 frame 大小一致,所以直接平移
Valid 表示 VPN 对应的内容在物理存储器中

Page Table 只需要 18+1 (valid) = 19 位,但由于物理存储器的数据位宽为 32bits,所以表项也是 32bits,多余的位可以用来表示其他信息,比如说页面的属性信息(可读、可写等)
这样页面大小为 32 bits * 2^20 = 4B * 1M = 4MB,放在物理内存里
程序状态包含:该程序页表、PC、通用寄存器。
该程序通常成为进程,可以保存好信息(页表只需要保存页表对应的 PTR 保存即可,mapping 信息可以用 store 指令完成)后暂停,过段时间再恢复,继续执行。不同进程使用的物理内存不会产生冲突了。
打开一个程序,操作系统会分配物理内存的空间、创建页表和堆栈,。当进程不存在时,物理内存的空间便会得到释放。
[!Note] 程序、进程、线程的关系
进程是操作系统进行资源分配的最小单元,
线程是操作系统进行运算调度的最小单元。
执行一次程序则会产生一个进程,多次多个,一个进程可以包含多个线程。
进程之间不会互相影响,线程之间公用地址空间,会互相干扰和影响。

由于页表空间需要 4MB 的连续地址来存储,一个处理器同时运行上百个进程时,则需要上百个 4MB 的连续地址来存储,非常占用空间。
所以采用多级页表的方式,来减少页表对物理存储空间的占用
多级页表
二级页表需要的空间:
32 位处理器下
- 单级页表:虚拟地址空间为 2^20 * 4B = 4MB
- 二级页表 (如果分成 2^10 等份,则需要 2^10+1 (第二级 pt 个数+第一级 pt) 个连续地址空间,每个空间大小为:2^10 * 4B = 4KB)
- 第一级表项,有 1 项,每项有 2^10 项第二级表项
- 第二级表项,有 2^10 项,每项有 2^10 项
实际上,第一级 PT 不一定填满,第二级 PT 只需要填充足够即可。
有需要时增加第二级 PT,一次增加 2^10 * 4KB = 4MB 的页面
[!Note]
PT 最少也需要 4KB 的连续地址空间,即便只用了其中一项


案例
32 位处理器下,页面大小为 4KB 下,4MB 程序的页表需要占用多大的空间呢?

最好情况:虚拟地址是连续的
一个二级 PT 能存储:2^10 * 4KB = 4MB 的程序
总共需要 1 项一级 PT,1 项二级 PT
页表占用总空间:2 * 4B * 2 ^10 = 8 KB (2 个 PT,每个 PT 占用 4B * 2^10 的空间)
最差情况:每个第二级 PT 都装有一项
一共 2^10 项二级列表,刚好 2^10 * 4KB = 4MB 的空间
页表占用总空间:2^10 * 4B * (2^10+1) = 4MB + 4 KB ( 2^10+1 个 PT,每个 PT 占用 4B * 2^10 = 4KB 的空间)
增加级数
当位数过多时,可以采用增加级数的方式
优点:级数越多,页表对物理空间的占用越少
缺点:需要逐级访问次数越多,时序越紧张

Page Fault
Page fault: 访问 PT 时,valid 位为 0,表示该页面在硬盘里,没有取到内存中
Page fault 通常由操作系统完成
- 发生 Page fault 时,访问硬盘时间很长,即便用软件处理需要几百条指令,但相比访问硬盘时间微乎其微
- 在替换物理内存的 frame 时,软件可以根据实际情况实现灵活替换算法
但是 valid=0 时,此时系统只知道 VA,怎么找对应的硬盘位置呢?
硬盘中会为一个进程的所有页开一个空间,也就是Swap 空间,同时会有一个表格来记录每个页在硬盘的存储位置。

为了处理 Page Fault,处理器在硬件上提供的支持
- 发生 page fault,产生异常,并且跳转到异常处理程序的入口地址
- 写物理地址之后,标记 dirty
- 访问物理地址时,标记 Use,该位会被操作系统周期性清零
程序保护
操作系统需要访问物理内存的所有空间,所以一般不使用页表
物理内存专门有一块给操作系统使用,不允许别的进程访问
比如:
32 位 MIPS 处理器,将 4GB 的虚拟存储空间分为 kseg0\1\2 和 kuseg 四个区域。
Kseg0 区域的属性是 unmapped,不经过页表转换
操作系统的内核指令和数据位于 kseg0 上,用户进程只能使用 kuseg
ARM 处理器会使用二级页表的方法,第二级页表的 PTE 都有一个 AP 部分
Privileged : 可以访问处理器所有资源,操作系统处于该模式下
User: 普通用户程序下

加入程序保护之后的地址转换。第二级页表控制 4KB 的页面权限,第一级控制 4MB 的页面权限

相关文章:
超标量处理器设计笔记(5)虚拟存储器、地址转换、page fault
虚拟存储器 概述地址转换单级页表多级页表案例最好情况:虚拟地址是连续的最差情况:每个第二级 PT 都装有一项 增加级数 Page Fault 程序保护 概述 当程序比物理内存空间更大时,无法全部装在物理内存中,需要对程序进行切片 虚拟…...
SparkSQL 读写数据攻略:从基础到实战
目录 一、输入Source 1)代码演示最普通的文件读取方式: 2) 通过jdbc读取数据库数据 3) 读取table中的数据【hive】 二、输出Sink 实战一:保存普通格式 实战二:保存到数据库中 实战三:将结果保存在h…...
react 使用状态管理调用列表接口渲染列表(包含条件查询,统一使用查询按钮,重置功能),避免重复多次调用接口的方法
react开发调用api接口一般使用useEffect来监听值的变化,通过值的变化与否来进行接口调用。 比如我们要进行一个查询接口 const [pageParams, setPage] useState({name: ,id: ,});const [dataList, setDataList] useState([]);const getList async () > {const…...
Stable Audio Open模型部署教程:用AI打造独家节拍,让声音焕发新活力!
Stable Audio Open 是一个开源的文本到音频模型,允许用户从简单的文本提示中生成长达 47 秒的高质量音频数据。该模型非常适合创建鼓点、乐器即兴演奏、环境声音、拟音录音和其他用于音乐制作和声音设计的音频样本。用户还可以根据他们的自定义音频数据微调模型&…...
加油站-(贪心算法)
题目描述 在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。 给定两个整数数组 gas…...
k8s-持久化存储PV与PVC(1)
1、概述 为什么 kubernetes 要持久化存储? 在 kubernetes 中部署应用都是以 Pod 的容器运行的,而 Pod 是有生命周期,一旦 Pod 被删除或重启后,这些数据也会随着丢失,则需要对这些数据进行持久化存储。 PV࿱…...
Linux Red Hat Enterprise
下载 https://developers.redhat.com/products/rhel/download 安装...
《中型 Vue 项目:挑战与成长》
一、引言 在当今的前端开发领域,Vue 作为一款渐进式 JavaScript 框架,以其强大的功能和灵活性备受开发者青睐。对于中型 Vue 项目而言,其重要性不言而喻。中型 Vue 项目通常在功能复杂度和规模上介于小型项目和大型项目之间,既需要…...
配置 DNS over HTTPS阻止DNS污染
概念介绍 DOH简介 DNS(域名系统)的主要功能是将域名解析成IP地址,域名的解析工作由DNS服务器完成。从安全角度来看,域名解析的请求传输时通常不进行任何加密,这导致第三方能够很容易拦截用户的DNS,将用…...
Facebook广告文案流量秘诀
Facebook 广告文案是制作有效 Facebook 广告的关键方面。它侧重于伴随广告视觉元素的文本内容。今天我们的博客将深入探讨成功的 Facebook 广告文案的秘密! 一、广告文案怎么写? 正文:这是帖子的正文,出现在您姓名的正下方。它可…...
22. 五子棋小游戏
文章目录 概要整体架构流程技术名词解释技术细节小结 1. 概要 🔊 JackQiao 对 米粒 说:“今天咱们玩个五子棋小游戏,电脑与你轮流在一个 nn 的网格上放置棋子(X 或 O),网格由你输入的正整数n决定࿰…...
fastadmin框架同时使用 阿里云oss和阿里云点播
背景 项目的实际需求中既要用到阿里云oss产品又用到阿里云点播系统,实现完美的统一。设置两个地址downUrl,thirdCode。分别代表阿里云oss上传路径和阿里云点播系统vId。 实现 默认框架你已经集成好阿里云oss集成工作,前端html页面实现 <…...
Java-JMX 组件架构即详解
JMX架构由三个主要组件构成: MBeans(Managed Beans):代表可管理的资源,是JMX的核心。MBean可以是Java类或接口,提供了管理操作的接口,如获取系统信息、设置参数等。MBeanServer&#x…...
unity打包web,发送post请求,获取地址栏参数,解决TypeError:s.replaceAll is not a function
发送post请求 public string url "http://XXXXXXXXX";// 请求数据public string postData "{\"user_id\": 1}";// Start is called before the first frame updatevoid Start(){// Post();StartCoroutine(PostRequestCoroutine(url, postData…...
java+ssm+mysql校园物品租赁网
项目介绍: 使用javassmmysql开发的校园物品租赁网,系统包含管理员、用户角色,功能如下: 管理员:用户管理;物品管理(物品种类、物品信息、评论信息);订单管理࿱…...
Spring Boot中实现JPA多数据源配置指南
本文还有配套的精品资源,点击获取 简介:本文详细介绍了在Spring Boot项目中配置和使用JPA进行多数据源管理的步骤。从引入依赖开始,到配置数据源、创建DataSource bean、定义实体和Repository,最后到配置事务管理器和使用多数据…...
服务器加固
1.服务器密码复杂度 密码最小长度,密码复杂度策略 vim /etc/pam.d/system-auth --------------- #密码配置 #ucredit:大写字母个数;lcredit:小写字母个数;dcredit:数字个数;ocredit:…...
探索CSS中的背景图片属性,让你的网页更加美观
导语:在网页设计中,背景图片的运用能够丰富页面视觉效果,提升用户体验。本文将详细介绍CSS中背景图片的相关属性,帮助大家更好地掌握这一技能。 一、背景图片基本属性 1、background-image 该属性用于设置元素的背景图片。语法如…...
Oracle的打开游标(OPEN_CURSORS)
一、OPEN_CURSORS 概述 OPEN_CURSORS 指定会话一次可以拥有的打开游标(私有 SQL 区域的句柄)的最大数量。可以使用此参数来防止会话打开过多的游标。 OPEN_CURSORS参数说明 特性 描述 参数类型 Integer 默认值 50 修改方式 ALTER SYSTEM PDB级别…...
数值分析—数值积分
研究背景 积分的数学解法为牛顿莱布尼兹公式,数学表示为 ∫ a b f ( x ) d x F ( b ) − F ( a ) \int_{a}^{b} f(x)dxF(b)-F(a) ∫abf(x)dxF(b)−F(a),但应用该方法有如下困难: 1, f ( x ) f(x) f(x)的原函数有时不能用初等函…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
