当前位置: 首页 > news >正文

[代码随想录Day32打卡] 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯

理论基础

题型

  1. 动归基础(这一节就是基础题)
  2. 背包问题
  3. 打家劫舍
  4. 股票问题
  5. 子序列问题

动态规划五部曲

  1. 确定dp数组及其下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 遍历顺序
  5. 打印dp数组

509. 斐波那契数

简单~

  1. dp数组及下标含义: dp[i]表示第i各斐波那契数,值为dp[i]
  2. 递推公式:dp[i] = dp[i-1] -dp[i-2]
  3. dp数组如何初始化:dp[0] = 0; dp[1] = 1;题目描述中有敌意
  4. 遍历顺序:从前往后
  5. 打印dp数组

当前位置的值只与该位置的前两个数值有关,只需要维护长度为2的数组。

class Solution {
public:int fib(int n) {if(n==0 || n==1) return n;vector<int> dp(2);dp[0] = 0; dp[1] = 1;for(int i=2; i<=n; i++){int sum = dp[1] + dp[0];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};
class Solution {public int fib(int n) {if(n == 0 || n == 1) return n;int[] dp = new int[2];dp[0] = 0; dp[1] = 1;for(int i = 2; i<=n; i++){int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
}
class Solution(object):def fib(self, n):""":type n: int:rtype: int"""if n == 0 or n == 1:return ndp = [0,1]for i in range(2, n+1):sum_ = dp[0] + dp[1]dp[0] = dp[1]dp[1] = sum_return dp[1] 

参考文章

  1. https://programmercarl.com/0509.%E6%96%90%E6%B3%A2%E9%82%A3%E5%A5%91%E6%95%B0.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE

70. 爬楼梯

要明白如果爬n层有两种情况: 一种是从n-2层迈两步上来的,一种是从n-1层迈一步上来的。所以到达第n层的方法数量=到达第n-2层的方法数+到达第n-1层的方法数。

  1. dp数组及其下标含义 dp[i] 表示到达第i层的方法数量
  2. 递推公式 dp[i] = dp[i-1] + dp[i-2]
  3. dp数组初始化 dp[1] = 1 dp[2] = 2,0没有实际意义
  4. 遍历顺序:从前往后
  5. 打印dp数组

当前位置数值只与当前位置前2个位置数值有关,只需要维护长度为2的数组,但是0没有实际意义,为了实现更加明确的初始化我们定义长度为3的数组,0这个位置不进行初始化。

class Solution {
public:int climbStairs(int n) {if(n==1 || n==2) return n;vector<int> dp(3);dp[1] = 1;//空出0来因为没有意义dp[2] = 2;for(int i = 3; i <= n; i++){int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
};
class Solution {public int climbStairs(int n) {if(n == 1 || n == 2) return n;int[] dp = new int[3];dp[1] = 1; dp[2] = 2;for(int i = 3; i <= n; i++){int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
}
class Solution(object):def climbStairs(self, n):""":type n: int:rtype: int"""if n == 1 or n == 2:return ndp = [None, 1, 2]for i in range(3, n+1):sum_ = dp[1] + dp[2]dp[1] = dp[2]dp[2] = sum_return dp[2]

参考文章

  1. https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF.html#%E7%AE%97%E6%B3%95%E5%85%AC%E5%BC%80%E8%AF%BE

746. 使用最小花费爬楼梯

Note:注意题目描述,该位置不花费体力,往上跳花费体力。并且cost的长度是顶楼。

  1. dp数组及其下标含义:dp[i] 到达第i层所需要的最小花费为dp[i]
  2. 递推公式: dp[i] = min(dp[i-1] + cost[i-1], dp[i-2] + cost[i-2]);
  3. dp数组如何初始化: dp[0]=0;dp[1]=0;//因为当前位置不花费,向上跳才花费所以都初始化为0
  4. 遍历顺序:从前往后
  5. 打印dp数组
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {if(cost.size()<2) return 0;vector<int> dp(2);for(int i = 2; i <= cost.size(); i++){int minCost = min(dp[0] + cost[i-2], dp[1] + cost[i-1]);dp[0] = dp[1];dp[1] = minCost;}return dp[1];}
};
class Solution {public int minCostClimbingStairs(int[] cost) {if(cost.length<2) return 0;int[] dp = new int[]{0, 0};for(int i = 2; i <= cost.length; i++){int minCost = Math.min(dp[0] + cost[i-2], dp[1] + cost[i-1]);dp[0] = dp[1];dp[1] = minCost;}return dp[1];}
}
class Solution(object):def minCostClimbingStairs(self, cost):""":type cost: List[int]:rtype: int"""if len(cost)<2:return 0dp = [0, 0]for i in range(2, len(cost)+1):minCost = min(dp[0]+cost[i-2], dp[1]+cost[i-1])dp[0] = dp[1]dp[1] = minCostreturn dp[1]

参考文章

  1. https://programmercarl.com/0746.%E4%BD%BF%E7%94%A8%E6%9C%80%E5%B0%8F%E8%8A%B1%E8%B4%B9%E7%88%AC%E6%A5%BC%E6%A2%AF.html

相关文章:

[代码随想录Day32打卡] 理论基础 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯

理论基础 题型 动归基础&#xff08;这一节就是基础题&#xff09;背包问题打家劫舍股票问题子序列问题 动态规划五部曲 确定dp数组及其下标的含义确定递推公式dp数组如何初始化遍历顺序打印dp数组 509. 斐波那契数 简单~ dp数组及下标含义&#xff1a; dp[i]表示第i各斐…...

android NumberPicker隐藏分割线或修改颜色

在 Android 中&#xff0c;可以通过以下几种方法隐藏 NumberPicker 的分割线&#xff1a; 使用 XML 属性设置 在布局文件中的 NumberPicker 标签内添加 android:selectionDividerHeight"0dp" 属性&#xff0c;将分割线的高度设置为 0&#xff0c;从而达到隐藏分割线…...

7-2 二分查找

输入n值(1<n<1000)、n个非降序排列的整数以及要查找的数x&#xff0c;使用二分查找算法查找x&#xff0c;输出x所在的下标&#xff08;0~n-1&#xff09;及比较次数。若x不存在&#xff0c;输出-1和比较次数。 输入格式: 输入共三行&#xff1a; 第一行是n值&#xff1…...

mid360使用cartorapher进行3d建图导航

1. 添加urdf配置文件&#xff1a; 添加IMU配置关节点和laser关节点 <!-- imu livox --> <joint name"livox_frame_joint" type"fixed"> <parent link"base_link" /> <child link"livox_frame" /> <o…...

Ubuntu安装grafana

需求背景&#xff1a;管理服务器&#xff0c;并在线预警&#xff0c;通知 需求目的&#xff1a; 及时获取服务器状态 技能要求&#xff1a; 1、ubuntu 2、grafana 3、prometheus 4、node 步骤&#xff1a; 一、grafana安装 1、准备系统环境&#xff0c;配置号网络 2、…...

Java版-图论-最短路-Floyd算法

实现描述 网络延迟时间示例 根据上面提示&#xff0c;可以计算出&#xff0c;最大有100个点&#xff0c;最大耗时为100*wi,即最大的耗时为10000&#xff0c;任何耗时计算出来超过这个值可以理解为不可达了&#xff1b;从而得出实现代码里面的&#xff1a; int maxTime 10005…...

可视化建模以及UML期末复习篇----UML图

这是一篇相对较长的文章&#xff0c;如你们所见&#xff0c;比较详细&#xff0c;全长两万字。我不建议你们一次性看完&#xff0c;直接跳目录找你需要的知识点即可。 --------欢迎各位来到我UML国&#xff01; 一、UML图 总共有如下几种&#xff1a; 用例图&#xff08;Use Ca…...

HTML常见标签列表,涵盖了多种用途的标签。

文档结构标签 <!DOCTYPE html>&#xff1a;声明文档类型&#xff0c;告诉浏览器使用HTML5标准。<html>&#xff1a;HTML文档的根元素。<head>&#xff1a;包含文档的元数据&#xff08;meta-data&#xff09;&#xff0c;如标题、字符集、样式表链接、脚本等…...

FPGA 16 ,Verilog中的位宽:深入理解与应用

目录 前言 一. 位宽的基本概念 二. 位宽的定义方法 1. 使用向量变量定义位宽 ① 向量类型及位宽指定 ② 位宽范围及位索引含义 ③ 存储数据与字节数据 2. 使用常量参数定义位宽 3. 使用宏定义位宽 4. 使用[:][-:]操作符定义位宽 1. 详细解释 : 操作符 -: 操作符 …...

vue-生命周期

Vue 的生命周期是指 Vue 实例从创建到销毁期间经历的一系列阶段。每个阶段都有相应的钩子函数&#xff08;Lifecycle Hooks&#xff09;&#xff0c;允许开发者在这些关键时刻执行自定义逻辑。 一、钩子函数 1. 创建阶段 beforeCreate 在实例初始化之后&#xff0c;数据观测 …...

浅谈Kubernetes(K8s)之RC控制器与RS控制器

1.RC控制器 1.1RC概述 Replication Controller 控制器会持续监控正在运行的Pod列表&#xff0c;并保证相应类型的Pod的数量与期望相符合&#xff0c;如果Pod数量过少&#xff0c;它会根据Pod模板创建新的副本&#xff0c;反之则会删除多余副本。通过RC可实现了应用服务的高可用…...

本题要求采用选择法排序,将给定的n个整数从大到小排序后输出。

#include <stdio.h> #define MAXN 10 int main() { int i, index, k, n, temp; int a[MAXN]; scanf("%d", &n); for (i 0; i < n; i) { scanf("%d", &a[i]); } // 外层循环控制排序轮数&#xff0c;一共需要n-1轮 for (k 0; k < n…...

Linux: glibc: 频繁调用new/delete会不会导致内存的碎片

最近同事问了一个问题:频繁调用new/delete会不会导致内存的碎片。 下面是我想到的一些回答, glibc的内存处理机制,是在释放的时候会自动将小块内存整合成大块内存,为接下来满足大块的需求的可能。而且程序也不是一直占着内存不释放(如果是一直不释放,要考虑是不是内存泄漏…...

量子变分算法---损失函数

引子 关于损失函数&#xff0c;我们知道在强化学习中&#xff0c;会有一个函数&#xff0c;用来表示模型每一次行为的分数&#xff0c;通过最大化得分&#xff0c;建立一个正反馈机制&#xff0c;若模型为最优则加分最多&#xff0c;若决策不佳则加很少分或者扣分。而在神经网络…...

计算机的性能评估

目录 计算机的性能评估 确定性能指标 考虑通讯因素 考虑机器过热因素 综合评估模型 动态评估与调整 计算机的性能评估 在分布式计算机系统中,综合考虑各种因素来评估性能是一个复杂但重要的问题。以下是一种可能的方法来综合考虑评估分布式计算机性能,动态地考虑实际情…...

大数据之国产数据库_OceanBase数据库002_在centos7.9上_安装部署OceanBase001_踩坑指南_亲测可用

部署前最好看一下,部署前的要求, 主要是系统 以及系统内核版本,还有比如清理一下缓存等,按照做一做. 这些都是前置条件. 清一下缓存. 也就是说官网给的前置的条件,都要根据说明去执行一遍,如果不执行可能后面安装会报错. 然后用户最好也去创建一个用户. 注意前置...

【ETCD】【源码阅读】深入解析 EtcdServer.run 函数

EtcdServer.run 是 etcd 的核心运行逻辑之一&#xff0c;负责管理 Raft 状态机的应用、事件调度以及集群的核心操作。本文将逐步从源码层面分析 run 函数的逻辑&#xff0c;帮助读者理解其内部机制和设计思想。 函数签名与关键职责 func (s *EtcdServer) run() {... }关键职责…...

springboot/ssm校内订餐系统Java代码web项目美食外卖点餐配送源码

springboot/ssm校内订餐系统Java代码web项目美食外卖点餐配送源码 基于springboot(可改ssm)vue项目 开发语言&#xff1a;Java 框架&#xff1a;springboot/可改ssm vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&#xff…...

floodfill算法

目录 什么是floodfill算法 题目一——733. 图像渲染 - 力扣&#xff08;LeetCode&#xff09; 题目二——200. 岛屿数量 - 力扣&#xff08;LeetCode&#xff09; 题目三——695. 岛屿的最大面积 - 力扣&#xff08;LeetCode&#xff09; 题目四—— 130. 被围绕的区域 …...

【JAVA】六亮增加贴

James Gosling&#xff08;詹姆斯.高斯林&#xff09; Java 语言源于 1991 年 4 月&#xff0c;Sun 公司 James Gosling博士 领导的绿色计划(Green Project) 开始启动&#xff0c;此计划最初的目标是开发一种能够在各种消费性电子产品(如机顶盒、冰箱、收音机等)上运行的程序…...

git提交时出现merge branch main of xxx

git提交时出现merge branch main of xxx 原因&#xff1a; 1、同事commit了一个修改A&#xff0c;push到remote 2、我把这个修改直接pull了下来&#xff08;pull是fetchmerge的操作&#xff0c;自动合并到本地workspace&#xff09; 3、同事因为后续的commit有冲突&#xff0c…...

lstm 输入数据的形状是怎么样的,他有两种输入方式,通过参数 batch_first来设置 默认是False

lstm 输入数据的形状是怎么样的&#xff0c;他有两种输入方式&#xff0c;通过参数 batch_first来设置 默认是False 当batch_firstFalse时&#xff0c;LSTM输入的数据形状通常是一个三维张量&#xff0c;其维度顺序为[sequence_length, batch_size, input_size]。下面是对这些维…...

Apache Doris 数据类型

Apache Doris 已支持的数据类型列表如下&#xff1a; 数值类型​ 类型名存储空间&#xff08;字节&#xff09;描述BOOLEAN1布尔值&#xff0c;0 代表 false&#xff0c;1 代表 true。TINYINT1有符号整数&#xff0c;范围 [-128, 127]。SMALLINT2有符号整数&#xff0c;范围 …...

编译问题 fatal error: rpc/rpc.h: No such file or directory

在编译一些第三方软件的时候&#xff0c;会经常遇到一些文件识别不到的问题&#xff0c;这里整理下做个归总。 目前可能的原因有&#xff08;排序分先后&#xff09;&#xff1a; 文件不存在&#xff1b;文件存在但路径识别不了&#xff1b;…… 这次以常见的编译lmbench测试…...

linux 安装composer

下载composer curl -sS https://getcomposer.org/installer | php下载后设置环境变量&#xff0c;直接通过命令composer -v mv composer.phar /usr/local/bin/composer查看版本看是否安装成功 composer -v...

数据库公共字段自动填充的三种实现方案

背景介绍 在实际项目开发中,我们经常需要处理一些公共字段的自动填充,比如: createTime (创建时间)updateTime (更新时间)createUser (创建人)updateUser (更新人) 这些字段在每个表中都存在,如果每次都手动设置会很麻烦。下面介绍三种常用的解决方案。 方案一&#xff1a;M…...

《MySQL 入门:数据库世界的第一扇门》

一、MySQL 简介 MySQL 是一种开源的关系型数据库管理系统&#xff0c;在数据库领域占据着重要地位。它以其高效查询、高安全性、低成本和扩展性著称&#xff0c;广泛应用于网站、企业级应用、数据分析等领域。 MySQL 具有诸多优点。首先&#xff0c;它成本低&#xff0c;作为…...

Qt之第三方库QCustomPlot使用(二)

Qt开发 系列文章 - qcustomplot&#xff08;二&#xff09; 目录 前言 一、Qt开源库 二、QCustomPlot 1.qcustomplot介绍 2.qcustomplot下载 3.qcustomplot移植 4.修改项目文件.pro 5.提升QWidget类‌ 三、技巧讲解 1.拖动缩放功能 2.等待更新 总结 前言 Qt第三方…...

JAVA-类与继承

啥是继承&#xff1f; 在JAVA中&#xff0c; 继承就是子类继承父类的特征和行为&#xff0c;使得子类拥有父类的特征和行为&#xff0c;同时还可以拥有父类所没有的特征和行为。 举个例子通俗来讲&#xff0c;兔子和羊是食草动物类&#xff0c;狮子和豹子是食肉动物类&#x…...

SSH连接报错,Corrupted MAC on input 解决方法

问题描述 客户在windows CMD中SSH连接失败&#xff0c;报错: Corrupted MAC on input ssh_dispatch_run_fatal: Connection to x.x.x.x port 22: message authentication code incorrect值得注意的是&#xff0c;客户通过别的机器做SSH连接可以成功&#xff0c;使用putty, mo…...

wordpress4.9漏洞利用/网站综合排名信息查询

1. 单例模式的简单实现 2. 单例模式的特点 3. 多线程安全的单例模式 4. 模版类的单例模式的实现 5. 使用单例模式需要注意的问题 1. 简单的单例模式如下&#xff1a; 1 class Singleton {2 private:3 Singleton() {};4 ~Singleton() {};5 public:6 static Singleto…...

做网站外包的公司好干嘛/网站seo博客

1.对于大型的游戏产品都会有剧情, 其实剧情不仅仅是简单的过度演示&#xff0c;优秀的剧情可以是低操作高细节的内置"剧情小游戏"转载于:https://www.cnblogs.com/vilyLei/articles/4047592.html...

做ppt高手_一定要常去这八个网站/做网站用什么软件好

1.操作系统平台&#xff1a;RHEL52.下载源码&#xff1a;2.1 安装git.由于rhel5默认没有安装git&#xff0c;所以需要用yum安装就行了。yum search git 这个命令是搜索git可以看到如下输出中有&#xff1a;git.i386 : Git core and tools所以&#xff0c;直接yum install git 就…...

php网站后台搭建/安卓优化大师官方下载

iPhone12 mini、iPhone12、iPhone12 Pro、iPhone12 Pro Max四款手机&#xff0c;屏幕尺寸分别为5.4英寸、6.1英寸、6.1英寸、6.7英寸。采用OLED屏幕&#xff0c;多年不变的刘海屏设计。综合各方面这次iPhone12将不会有高刷新率。 iphone手机爆降2500 这活动太给力了机会不容错过…...

php动态网站开发论文/什么是百度竞价推广

转自&#xff1a;https://blog.csdn.net/paincupid/article/details/49924299 经常会接触到VO&#xff0c;DO&#xff0c;DTO的概念&#xff0c;本文从领域建模中的实体划分和项目中的实际应用情况两个角度&#xff0c;对这几个概念进行简析。 得出的主要结论是&#xff1a;在项…...

wordpress搬家图片不显示/营销网站优化推广

水仙花数是指一个N位正整数&#xff08;N≥3&#xff09;&#xff0c;它的每个位上的数字的N次幂之和等于它本身。 例如&#xff1a;1531​35​333 ​ 本题要求编写两个函数&#xff0c;一个判断给定整数是否水仙花数&#xff0c;另一个按从小到大的顺序打印出给定区间(m,n)内所…...