当前位置: 首页 > news >正文

深度学习案例:DenseNet + SE-Net

本文为为🔗365天深度学习训练营内部文章

原作者:K同学啊

 一 回顾DenseNet算法

DenseNet(Densely Connected Convolutional Networks)是一种深度卷积神经网络架构,提出的核心思想是通过在每一层与前面所有层进行直接连接,极大地增强了信息和梯度的流动。传统的卷积神经网络(CNN)结构中,每一层的输入仅来自前一层,而DenseNet通过让每一层的输入包含所有前面层的输出,形成了更密集的连接。这样的设计能够减少梯度消失的问题,促进特征复用,提高模型的表现力和学习效率。

DenseNet的优势主要体现在两个方面。首先,由于密集连接的特点,它在同等参数量下比传统的卷积网络能够学习到更丰富的特征,提升了网络的性能。其次,由于每层都接收前面层的特征图,DenseNet有效缓解了深度神经网络中训练难度较大的问题,特别是在处理深层网络时,可以显著提高梯度的传递效率,减少了对大规模数据集的需求。通过这些优点,DenseNet在图像分类、目标检测等任务中表现出色。

通道注意力机制上文提及,不再叙述。以下是DenseNet+SE-Net代码 

'''
SE模块实现
'''
import tensorflow as tf
from keras.models import Model
from keras import layers
from keras import backendclass Squeeze_excitation_layer(tf.keras.Model):def __init__(self, filter_sq):super().__init__()self.filter_sq = filter_sqself.avepool = tf.keras.layers.GlobalAveragePooling2D()def build(self, input_shape):self.dense1 = tf.keras.layers.Dense(self.filter_sq, activation='relu')self.dense2 = tf.keras.layers.Dense(input_shape[-1], activation='sigmoid')def call(self, inputs):squeeze = self.avepool(inputs)excitation = self.dense1(squeeze)excitation = self.dense2(excitation)excitation = tf.keras.layers.Reshape((1, 1, inputs.shape[-1]))(excitation)scale = inputs * excitationreturn scaledef dense_block(x,blocks,name):for i in range(blocks):x = conv_block(x,32,name=name+'_block'+str(i+1))return xdef conv_block(x,growth_rate,name):bn_axis = 3x1 = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name+'_0_bn')(x)x1 = layers.Activation('relu',name=name+'_0_relu')(x1)x1 = layers.Conv2D(4*growth_rate,1,use_bias=False,name=name+'_1_conv')(x1)x1 = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name + '_1_bn')(x1)x1 = layers.Activation('relu', name=name + '_1_relu')(x1)x1 = layers.Conv2D(growth_rate, 3, padding='same',use_bias=False, name=name + '_2_conv')(x1)x = layers.Concatenate(axis=bn_axis,name=name+'_concat')([x,x1])return xdef transition_block(x,reduction,name):bn_axis = 3x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name=name+'_bn')(x)x = layers.Activation('relu',name=name+'_relu')(x)x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction),1,use_bias=False,name=name+'_conv')(x)x = layers.AveragePooling2D(2,strides=2,name=name+'_pool')(x)return xdef DenseNet(blocks,input_shape=None,classes=1000,**kwargs):img_input = layers.Input(shape=input_shape)bn_axis = 3# 224,224,3 -> 112,112,64x = layers.ZeroPadding2D(padding=((3,3),(3,3)))(img_input)x = layers.Conv2D(64,7,strides=2,use_bias=False,name='conv1/conv')(x)x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name='conv1/bn')(x)x = layers.Activation('relu',name='conv1/relu')(x)# 112,112,64 -> 56,56,64x = layers.ZeroPadding2D(padding=((1,1),(1,1)))(x)x = layers.MaxPooling2D(3,strides=2,name='pool1')(x)# 56,56,64 -> 56,56,64+32*block[0]# DenseNet121 56,56,64 -> 56,56,64+32*6 == 56,56,256x = dense_block(x,blocks[0],name='conv2')# 56,56,64+32*block[0] -> 28,28,32+16*block[0]# DenseNet121 56,56,256 -> 28,28,32+16*6 == 28,28,128x = transition_block(x,0.5,name='pool2')# 28,28,32+16*block[0] -> 28,28,32+16*block[0]+32*block[1]# DenseNet121 28,28,128 -> 28,28,128+32*12 == 28,28,512x = dense_block(x,blocks[1],name='conv3')# DenseNet121 28,28,512 -> 14,14,256x = transition_block(x,0.5,name='pool3')# DenseNet121 14,14,256 -> 14,14,256+32*block[2] == 14,14,1024x = dense_block(x,blocks[2],name='conv4')# DenseNet121 14,14,1024 -> 7,7,512x = transition_block(x,0.5,name='pool4')# DenseNet121 7,7,512 -> 7,7,256+32*block[3] == 7,7,1024x = dense_block(x,blocks[3],name='conv5')# 加SE注意力机制x = Squeeze_excitation_layer(16)(x)x = layers.BatchNormalization(axis=bn_axis,epsilon=1.001e-5,name='bn')(x)x = layers.Activation('relu',name='relu')(x)x = layers.GlobalAveragePooling2D(name='avg_pool')(x)x = layers.Dense(classes,activation='softmax',name='fc1000')(x)inputs = img_inputif blocks == [6,12,24,16]:model = Model(inputs,x,name='densenet121')elif blocks == [6,12,32,32]:model = Model(inputs,x,name='densenet169')elif blocks == [6,12,48,32]:model = Model(inputs,x,name='densenet201')else:model = Model(inputs,x,name='densenet')return modeldef DenseNet121(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,24,16],input_shape,classes,**kwargs)def DenseNet169(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,32,32],input_shape,classes,**kwargs)def DenseNet201(input_shape=[224,224,3],classes=3,**kwargs):return DenseNet([6,12,48,32],input_shape,classes,**kwargs)from tensorflow.keras.optimizers import Adam# 实例化模型,指定输入形状和类别数
model = DenseNet201(input_shape=[224,224,3], classes=2)
model.summary()
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-7)model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])epochs = 25history = model.fit(train_ds,validation_data=val_ds,epochs=epochs,
)# 获取实际训练轮数
actual_epochs = len(history.history['accuracy'])acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(actual_epochs)plt.figure(figsize=(12, 4))# 绘制准确率
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')# 绘制损失
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')plt.show()

总结:DenseNet与SE-Net(Squeeze-and-Excitation Networks)结合后,能够进一步增强模型的表现力和效率。DenseNet通过密集连接每一层,促进了特征的复用和梯度的流动,而SE-Net通过引入通道注意力机制,能够自动学习每个特征通道的重要性,调整通道的权重。将这两者结合起来,DenseNet负责加强特征之间的关联性和信息流动,而SE-Net则提升了特征通道的自适应能力,使得网络能够在不同任务中更加精准地利用最有用的特征。这样的结合使得模型在保持高效的同时,能够更加聚焦于有价值的特征,从而提升了性能,尤其在处理复杂的视觉任务时,表现尤为出色。

相关文章:

深度学习案例:DenseNet + SE-Net

本文为为🔗365天深度学习训练营内部文章 原作者:K同学啊 一 回顾DenseNet算法 DenseNet(Densely Connected Convolutional Networks)是一种深度卷积神经网络架构,提出的核心思想是通过在每一层与前面所有层进行直接连接…...

excel文件合并,每个excel名称插入excel列

import pandas as pd import os # 设置文件夹路径 folder_path rC:\test # 替换为您的下载文件夹路径 output_file os.path.join(folder_path, BOM材料.xlsx) # 创建一个空的 DataFrame 用于存储合并的数据 combined_data pd.DataFrame() # 遍历文件夹中的所有文件 for …...

Linux 如何设置特殊权限?

简介 通过使用 setuid、setgid 、sticky,它们是 Linux 中的特殊权限,可以对文件和目录的访问和执行方式提供额外的控制。 命令八进制数字功能setuid4当执行文件时,它以文件所有者的权限运行,而不是执行它的用户的权限运行。setg…...

零基础如何使用ChatGPT快速学习Python

引言 AI编程时代来临,没有编程基础可以快速上车享受时代的红利吗?答案是肯定的。本文旨在介绍零基础如何利用ChatGPT快速学习Python编程语言,开启AI编程之路。解决的问题包括:传统学习方式效率低、缺乏互动性以及学习资源质量参差…...

【开源】一款基于SpringBoot 的全开源充电桩平台

一、下载项目文件 下载源码项目文件口令:动作璆璜量子屏多好/~d1b8356ox2~:/复制口令后,进入夸克网盘app即可保存(如果复制到夸克app没有跳转资源,可以复制粘贴口令到夸克app的搜索框也可以打开(不用点搜索按钮&#…...

AI - RAG中的状态化管理聊天记录

AI - RAG中的状态化管理聊天记录 大家好,今天我们来聊聊LangChain和LLM中一个重要的话题——状态化管理聊天记录。在使用大语言模型(LLM)的时候,聊天记录(History)和状态(State)管理是非常关键的。那我们先…...

JAVA安全—SpringBoot框架MyBatis注入Thymeleaf模板注入

前言 之前我们讲了JAVA的一些组件安全,比如Log4j,fastjson。今天讲一下框架安全,就是这个也是比较常见的SpringBoot框架。 SpringBoot框架 Spring Boot是由Pivotal团队提供的一套开源框架,可以简化spring应用的创建及部署。它提…...

【STM32系列】提升ADC采样精度的方法

资料地址 兆易创新GigaDevice-资料下载兆易创新GD32 MCU ADC简介 ADC转换包括采样、保持、量化、编码四个步骤。的采样电容上,即在采样开关 SW 关闭的过程中,外部输入信号通过外部的输入电阻 RAIN 和以及 ADC 采样电阻 RADC 对采样电容 CADC 充电。采样…...

前端面试如何出彩

1、原型链和作用域链说不太清,主要表现在寄生组合继承和extends继承的区别和new做了什么。2、推荐我的两篇文章:若川:面试官问:能否模拟实现JS的new操作符、若川:面试官问:JS的继承 3、数组构造函数上有哪些…...

Linux 切换用户的两种方法

sudo -su user1 与 su - user1 都可以让当前用户切换到 user1 的身份执行命令或进入该用户的交互式 Shell。但它们在权限认证方式、环境变量继承和 Shell 初始化过程等方面存在一些差异。 权限认证方式 su - user1 su 是 “switch user” 的缩写,默认情况下需要你输…...

Spring Boot 3 中Bean的配置和实例化详解

一、引言 在Java企业级开发领域,Spring Boot凭借其简洁、快速、高效的特点,迅速成为了众多开发者的首选框架。Spring Boot通过自动配置、起步依赖等特性,极大地简化了Spring应用的搭建和开发过程。而在Spring Boot的众多核心特性中&#xff…...

Vue实现留言板(实现增删改查)注意:自己引入Vue.js哦

代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><scri…...

IDEA创建Spring Boot项目配置阿里云Spring Initializr Server URL【详细教程-轻松学会】

1.首先打开idea选择新建项目 2.选择Spring Boot框架(就是选择Spring Initializr这个) 3.点击中间界面Server URL后面的三个点更换为阿里云的Server URL Idea中默认的Server URL地址&#xff1a;https://start.spring.io/ 修改为阿里云Server URL地址&#xff1a;https://star…...

读取电视剧MP4视频的每一帧,检测出现的每一个人脸并保存

检测效果还不错,就是追踪有点难做 import cv2 import mediapipe as mp import os from collections import defaultdict# pip install msvc-runtime# 初始化OpenCV的MultiTracker # multi_tracker = cv2.MultiTracker_create() # multi_tracker = cv2.legacy.MultiTracker_cre…...

HTML前端开发-- Iconfont 矢量图库使用简介

一、SVG 简介及基础语法 1. SVG 简介 SVG&#xff08;Scalable Vector Graphics&#xff09;是一种基于 XML 的矢量图形格式&#xff0c;用于在网页上显示二维图形。SVG 图形可以无限缩放而不会失真&#xff0c;非常适合用于图标、图表和复杂图形。SVG 文件是文本文件&#x…...

使用Allure作为测试报告生成器(Java+Selenium)

背景 JAVA项目中原先用Jenkinsseleniumselenium grid来日常测试UI并记录。 问题 当某一个testSuite失败时&#xff0c;当需要确认UI regression issue还是selenium test case自身的问题&#xff0c;需要去jenkins中查log&#xff0c;一般得到的是“Can not find element xxx…...

RocketMQ面试题合集

消费者获取消息是从Master Broker还是Slave Broker获取&#xff1f; Master Broker宕机&#xff0c;Slave Broker会自动切换为Master Broker吗&#xff1f; 这种Master-Slave模式不是彻底的高可用模式&#xff0c;他没法实现自动把Slave切换为Master。在RocketMQ 4.5之后&…...

Qt初识_对象树

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 Qt初识_对象树 收录于专栏【Qt开发】 本专栏旨在分享学习Qt的一点学习笔记&#xff0c;欢迎大家在评论区交流讨论&#x1f48c; 目录 什么是对象树 为什么要引…...

axios的get和post请求,关于携带参数相关的讲解一下

在使用 Axios 发送 HTTP 请求时&#xff0c;GET 和 POST 请求携带参数的方式有所不同。以下是关于这两种请求方法携带参数的详细讲解&#xff1a; GET 请求携带参数 对于 GET 请求&#xff0c;参数通常附加在 URL 之后&#xff0c;以查询字符串的形式传递。 直接在 URL 中拼接…...

Vue前端开发-路由其他配置

在路由文件中&#xff0c;除了跳转配置外&#xff0c;还可以进行路径重定向配置&#xff0c;如果没有找到对应的地址&#xff0c;还可以实现404的配置&#xff0c;同时&#xff0c;如果某个页面需要权限登录&#xff0c;还可以进行路由守卫配置&#xff0c;接下来&#xff0c;分…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

数据链路层的主要功能是什么

数据链路层&#xff08;OSI模型第2层&#xff09;的核心功能是在相邻网络节点&#xff08;如交换机、主机&#xff09;间提供可靠的数据帧传输服务&#xff0c;主要职责包括&#xff1a; &#x1f511; 核心功能详解&#xff1a; 帧封装与解封装 封装&#xff1a; 将网络层下发…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

uni-app学习笔记三十五--扩展组件的安装和使用

由于内置组件不能满足日常开发需要&#xff0c;uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件&#xff0c;需要安装才能使用。 一、安装扩展插件 安装方法&#xff1a; 1.访问uniapp官方文档组件部分&#xff1a;组件使用的入门教程 | uni-app官网 点击左侧…...

大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...

Selenium 查找页面元素的方式

Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素&#xff0c;以下是主要的定位方式&#xff1a; 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...

02-性能方案设计

需求分析与测试设计 根据具体的性能测试需求&#xff0c;确定测试类型&#xff0c;以及压测的模块(web/mysql/redis/系统整体)前期要与相关人员充分沟通&#xff0c;初步确定压测方案及具体的性能指标QA完成性能测试设计后&#xff0c;需产出测试方案文档发送邮件到项目组&…...