当前位置: 首页 > news >正文

最小二乘法拟合出二阶响应面近似模型

背景:根据样本试验数据拟合出二阶响应面近似模型(正交二次型),并使用决定系数R²和调整的决定系数R²_adj来判断二阶响应面模型的拟合精度。


1、样本数据(来源:硕士论文《航空发动机用W形金属密封环密封性能分析与优化》)

编号 x1	     x2	     x3	     x4    	y1	    y2	    y3
1	0.67	0.70	1.78	0.83	804.8	246.7	37.7
2	0.59	0.73	2.09	0.72	686.3	213.5	40.1
3	0.69	0.78	1.81	0.86	703.6	221.0	39.3
4	0.57	0.70	1.84	0.73	822.3	253.6	37.1
5	0.58	0.80	2.07	0.74	632.4	201.6	40.9
6	0.66	0.77	1.95	0.71	716.9	224.7	39.7
7	0.61	0.69	2.04	0.75	730.1	223.3	39.4
8	0.66	0.83	1.88	0.76	676.6	215.8	40.0
9	0.71	0.66	1.85	0.77	845.0	254.6	37.8
10	0.64	0.72	1.73	0.82	813.2	251.8	37.2
11	0.71	0.71	1.99	0.81	709.0	217.4	40.1
12	0.60	0.77	1.91	0.79	698.2	219.5	39.2
13	0.70	0.65	1.94	0.80	794.9	237.9	38.7
14	0.74	0.74	1.96	0.89	663.2	205.7	40.8
15	0.74	0.67	1.74	0.87	839.3	253.8	37.5
16	0.56	0.68	1.87	0.84	773.6	221.6	37.7
17	0.62	0.84	2.06	0.77	598.0	193.0	41.8
18	0.64	0.72	2.01	0.78	703.4	217.3	39.8
19	0.68	0.79	1.79	0.70	777.5	245.8	38.4
20	0.65	0.84	1.81	0.90	640.6	205.3	40.1
21	0.73	0.75	1.76	0.88	743.3	230.9	38.8
22	0.63	0.82	1.70	0.84	726.0	231.4	38.3
23	0.60	0.83	1.90	0.81	648.0	207.5	40.1
24	0.56	0.76	1.97	0.76	693.6	217.9	39.3
25	0.72	0.81	2.03	0.85	600.7	191.7	42.2

2、将上述数据存放在sample_data.xlsx表格中,再编写matlab代码

% % 读取数据(假设数据已经保存在一个名为'data.txt'的文件中,使用空格或制表符分隔)
%% 近似模型:y = a0+a1*x1+a2*x2+a3*x3+a4*x4+a5*x1*x2+a6*x1*x3+a7*x1*x4+a8*x2*x3+a9*x2*x4+a10*x3*x4+a11*x1^2+a12*x2^2+a13*x3^2+a14*x4^2;
clc;clear;
filename = 'sample_data.xlsx';
data = xlsread(filename);% 提取自变量和因变量
X = data(:, 2:5); % x1, x2, x3, x4
y = data(:, 6:8); % y1, y2, y3% 构建扩展自变量矩阵(包括线性项、交互项和平方项)
[n, m] = size(X);
X_extended = ones(n, 1); % 初始化扩展矩阵,第一列为截距项% 添加线性项
X_extended = [X_extended, X];% 添加交互项
X_extended = [X_extended, X(:,1).*X(:,2), X(:,1).*X(:,3), X(:,1).*X(:,4), ...X(:,2).*X(:,3), X(:,2).*X(:,4), X(:,3).*X(:,4)];% 添加平方项
X_extended = [X_extended, X(:,1).^2, X(:,2).^2, X(:,3).^2, X(:,4).^2];% 使用最小二乘法求解回归系数(对每个因变量分别进行)
beta_values = zeros(15, 3); % 15个系数(包括截距项),3个因变量
R2_values = zeros(1, 3);
adjusted_R2_values = zeros(1, 3);for i = 1:3% 拟合模型beta = (X_extended' * X_extended) \ (X_extended' * y(:, i));beta_values(:, i) = beta;% 预测值y_pred = X_extended * beta;% 计算SST, SSE, SSRSST = sum((y(:, i) - mean(y(:, i))).^2);SSE = sum((y(:, i) - y_pred).^2);SSR = SST - SSE;% 计算R^2R2_values(i) = SSR / SST;% 计算调整后的R^2p = size(X_extended, 2); % 自变量数量(包括截距项)adjusted_R2_values(i) = 1 - (1 - R2_values(i)) * ((n - 1) / (n - p));
end% 显示结果
disp('回归系数(包括截距项):');
disp(beta_values);
disp('决定系数 R^2:');
disp(R2_values);
disp('调整的决定系数 Adjusted R^2:');
disp(adjusted_R2_values);

3、运行结果

4、如上,决定系数和调整的决定系数均大于0.95,可见,近似模型满足精度要求。

相关文章:

最小二乘法拟合出二阶响应面近似模型

背景:根据样本试验数据拟合出二阶响应面近似模型(正交二次型),并使用决定系数R和调整的决定系数R_adj来判断二阶响应面模型的拟合精度。 1、样本数据(来源:硕士论文《航空发动机用W形金属密封环密封性能分析…...

【汽车】-- 常见的汽车悬挂系统

汽车悬挂系统是车辆的重要组成部分,其主要功能是连接车轮和车身,减缓路面颠簸对车身的影响,提高行驶的平顺性、舒适性和操控性。以下是常见的汽车悬挂系统类型及其特点: 1. 独立悬挂系统 每个车轮可以独立上下运动,不…...

VMware Workstation Pro 17 下载 以及 安装 Ubuntu 20.04.6 Ubuntu 启用 root 登录

1、个人免费版本 VMware Workstation Pro 17 下载链接怎么找?直接咕咕 VMware 找到如下链接。链接如下:Workstation 和 Fusion 对个人使用完全免费,企业许可转向订阅 - VMware 中文博客 点进去链接之后你会看到如下,注意安装之后仍…...

记录ubuntu22.04重启以后无法获取IP地址的问题处理方案

现象描述:我的虚拟机网络设置为桥接模式,输入ifconfig只显示127.0.0.1,不能连上外网。,且无法上网,用ifconfig只有如下显示: 1、sudo -i切换为root用户 2、输入dhclient -v 再输入ifconfig就可以看到多了…...

linux 删除系统特殊的的用户帐号

禁止所有默认的被操作系统本身启动的且不需要的帐号,当你第一次装上系统时就应该做此检查,Linux提供了各种帐号,你可能不需要,如果你不需要这个帐号,就移走它,你有的帐号越多,就越容易受到攻击。 1.为删除你系统上的用户,用下面的…...

core Webapi jwt 认证

core cookie 验证 Web API Jwt 》》》》用户信息 namespace WebAPI001.Coms {public class Account{public string UserName { get; set; }public string UserPassword { get; set; }public string UserRole { get; set; }} }》》》获取jwt类 using Microsoft.AspNetCore.Mvc…...

【Redis】Redis基础——Redis的安装及启动

一、初识Redis 1. 认识NoSQL 数据结构:对于SQL来说,表是有结构的,如字段约束、字段存储大小等。 关联性:SQL 的关联性体现在两张表之间可以通过外键,将两张表的数据关联查询出完整的数据。 查询方式: 2.…...

Oracle Recovery Tools工具一键解决ORA-00376 ORA-01110故障(文件offline)---惜分飞

客户在win上面迁移数据文件,由于原库非归档,结果导致有两个文件scn不一致,无法打开库,结果他们选择offline文件,然后打开数据库 Wed Dec 04 14:06:04 2024 alter database open Errors in file d:\app\administrator\diag\rdbms\orcl\orcl\trace\orcl_ora_6056.trc: ORA-01113:…...

常用环境部署(二十四)——Docker部署开源物联网平台Thingsboard

1、Docker和Docker-compose安装 参考网址如下: CENTOS8.0安装DOCKER&DOCKER-COMPOSE以及常见报错解决_centos8安装docker-compose-CSDN博客 2、 Thingsboard安装 (1)在/home目录下创建docker-compose.yml文件 vim /home/docker-com…...

SqlServer Doris Flink SQL 类型映射关系

SqlServer 对应 Flink SQL 数据类型映射关系 SQL Server TypeFlink SQL Typechar(n)CHAR(n)varchar(n)VARCHAR(n)nvarchar(n)VARCHAR(n)nchar(n)VARCHAR(n)textSTRINGntextSTRINGxmlSTRINGdecimal(p, s)DECIMAL(p, s)moneyDECIMAL(p, s)smallmoneyDECIMAL(p, s)numericNUMERIC…...

Java 中的方法重写

在 Java 中,方法重写(Method Overriding)是面向对象编程的一个重要概念,它指的是子类中存在一个与父类中相同名称、相同参数列表和相同返回类型的方法。方法重写使得子类可以提供特定的实现,从而覆盖(或改变…...

v-for遍历多个el-popover;el-popover通过visible控制显隐;点击其他隐藏el-popover

场景:el-popover通过visible控制显隐;同时el-popover是遍历生成的多个。 原文档的使用visible后就不能点击其他地方使其隐藏;同时解决实现点击其他区域隐藏 <template><div><template v-for="(item,index) in arr" :key="index"><…...

从 Excel 文件中读取数据生成 SQL 语句[快捷main方法]

从 Excel 文件中读取数据生成 SQL 语句的实现 在日常工作中&#xff0c;我们经常需要从 Excel 文件中提取数据&#xff0c;并将其转换为 SQL 插入语句&#xff0c;以便于将数据导入到数据库中。在这篇文章中&#xff0c;我将展示如何使用 Java 来实现这一需求。 项目需求 我…...

从0到1实现项目Docker编排部署

在深入讨论 Docker 编排之前&#xff0c;首先让我们了解一下 Docker 技术本身。Docker 是一个开源平台&#xff0c;旨在帮助开发者自动化应用程序的部署、扩展和管理。自 2013 年推出以来&#xff0c;Docker 迅速发展成为现代软件开发和运维领域不可或缺的重要工具。 Docker 采…...

Vue框架入门

Author&#xff1a;Dawn_T17?? 目录 什么是框架 一.Vue 的使用方向 二.Vue 框架的使用场景 &#xff08;TIP&#xff09;MVVM思想 三.Vue入门案例 TIP&#xff1a;插值表达式 四.Vue-指令? &#xff08;1&#xff09;v-bind 和 v-model? ? &#xff08;2&#x…...

vue入门实战(二)父子组件显示,参数传递

经过上次的写法&#xff0c;我们已经写出每个list项&#xff0c;现在要在每个父组件下面加入自己的子项 一、新建子组件&#xff1a; smallItem.vue&#xff1a; <script> export default{props:[text,id,status] //父组件传来的参数 } </script> <template>…...

【Linux】Ubuntu:安装系统后配置

hostname&#xff1a;更改主机名 打开终端。 使用hostnamectl命令更改主机名。 sudo hostnamectl set-hostname 新的主机名你可以使用hostnamectl 命令来验证更改是否成功&#xff1a; hostnamectlChrome&#xff1a;更换默认浏览器 以下是从 Ubuntu 中移除预装的 Snap 版 Fi…...

springboot-查看版本和版本所需JDK

文章目录 访问spring管网查看springboot 项目查看当前版本查看版本所需JDK 访问spring管网 https://spring.io/ 查看springboot 项目 查看当前版本 点击调整到参考文档中去… 查看版本所需JDK...

fuxa搭建与使用(web组态)

1. 安装Node.js -> npm安装 参考网址&#xff1a;https://blog.csdn.net/WHF__/article/details/129362462 一、安装运行 C:WINDOWSsystem32>node -v v20.17.0 C:WINDOWSsystem32>npm -v 10.8.2 二、环境配置 在安装路径&#xff08;D:Program_Files odejs&#x…...

中间件--MongoDB部署及初始化js脚本(docker部署,docker-entrypoint-initdb.d,数据迁移,自动化部署)

一、概述 MongoDB是一种常见的Nosql数据库&#xff08;非关系型数据库&#xff09;&#xff0c;以文档&#xff08;Document&#xff09;的形式存储数据。是非关系型数据库中最像关系型数据库的一种。本篇主要介绍下部署和数据迁移。 在 MongoDB 官方镜像部署介绍中&#xff…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...