当前位置: 首页 > news >正文

python学opencv|读取图像(九)用numpy创建黑白相间灰度图

【1】引言

前述学习过程中,掌握了用numpy创建矩阵数据,把所有像素点的BGR取值设置为0,然后创建纯黑灰度图的方法,具体链接为:

python学opencv|读取图像(八)用numpy创建纯黑灰度图-CSDN博客

在更早的学习进程中,我们了解到opencv对灰度图的颜色BGR取值都是[0,255],链接为:

python学opencv|读取图像(六)读取图像像素RGB值-CSDN博客

为此,我们尝试优化BGR取值,让其逐渐变化,显示黑白相间的灰度图。

【2】代码测试

【2.1】设置BGR=255

在纯黑灰度图的设计中,所有BGR=0,在这里我们先做修改,将BGR改为最大值255,获得下述代码:

import numpy as np #引入numpy模块
import cv2 as cv #引入cv2模块
from imageio.v2 import imwrite#定义图像
t=np.arange(300,600,20) #定义变量,在[300,600)区间,每隔20取一个值
t_max=np.max(t) #取变量最大值作为像素大小
print('t_max=',t_max) #输出最大值
image=np.zeros([t_max,t_max],np.uint8) #定义一个竖直和水平像素均为t最大值的全0矩阵
image[80:500,80:500]=255  #设置动态像素#显示和保存定义的图像
cv.imshow('display-pho',image) #显示图像
cv.imwrite('image-2.jpg',image) #保存图像
cv.waitKey() #图像不关闭
cv.destroyAllWindows() #释放所有窗口

上述代码中,在垂直和水平像素区间均取[80:500]的范围内,设置BGR=255,相关代码为:

image[80:500,80:500]=255  #设置动态像素

运行后的输出图像为:

26bb994a50d842e49c2ff77179841ea1.jpeg

图1

此时我们看到黑白相间的灰度图。

在区间[0,255]范围内,BGR=0时为纯黑色图;BGR=255时为纯白色图。

【2.2】设置BGR为变量

进一步,修改BGR为变量,对应的代码为:

for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=250*np.sin(0.1*i)+250*np.tanh(0.1*i) #设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])

此时获得的图像为:

e8cc9e5b46324727a31a6cb869ecc02c.jpeg

图2

对应的完整代码为:

import numpy as np #引入numpy模块
import cv2 as cv #引入cv2模块
from imageio.v2 import imwrite#定义图像
t=np.arange(300,600,20) #定义变量,在[300,600)区间,每隔20取一个值
t_max=np.max(t) #取变量最大值作为像素大小
print('t_max=',t_max) #输出最大值
image=np.zeros([t_max,t_max],np.uint8) #定义一个竖直和水平像素均为t最大值的全0矩阵
for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=250*np.sin(0.1*i)+250*np.tanh(0.1*i) #设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])#显示和保存定义的图像
cv.imshow('display-pho',image) #显示图像
cv.imwrite('image-3.jpg',image) #保存图像
cv.waitKey() #图像不关闭
cv.destroyAllWindows() #释放所有窗口

有时候我们系那个大胆尝试一下颜色动态变化的图像,这个时候可以定义一个随机矩阵:

k=np.random.randint(0,255,[t_max,t_max]) #创建一个随机数矩阵

然后命令所有的BGR和随机矩阵的数据一一对应:

for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=k[i,j]#设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])

这时候就会得到一个类似于万家灯火的灰度图:

cf621bf913c9470da2516c594e7047a1.jpeg

图3

此时对应的完整代码为:

import numpy as np #引入numpy模块
import cv2 as cv #引入cv2模块
from imageio.v2 import imwrite#定义图像
t=np.arange(300,600,20) #定义变量,在[300,600)区间,每隔20取一个值
t_max=np.max(t) #取变量最大值作为像素大小
print('t_max=',t_max) #输出最大值
image=np.zeros([t_max,t_max],np.uint8) #定义一个竖直和水平像素均为t最大值的全0矩阵
k=np.random.randint(0,255,[t_max,t_max]) #创建一个随机数矩阵
print('k=',k)
for i in range(80,500,10):for j in range(80,500,20):image[i:i+5,j:j+5]=k[i,j]#设置动态像素print('i=',i,'j=',j)print('image[i,j]=',image[i,j])#显示和保存定义的图像
cv.imshow('display-pho',image) #显示图像
cv.imwrite('image-3.jpg',image) #保存图像
cv.waitKey() #图像不关闭
cv.destroyAllWindows() #释放所有窗口

【2.3】代码细节

需要注意的是 ,image[i:i+5,j:j+5]的目的是为了设置白色或者黑色线条的长度和宽度。

i:i+5表示[i,i+5]这个区间内,竖直方向的像素范围;

j:j+5表示[j,j+5]这个区间内,水平方向的像素范围。

通过修改这个区间内的数据,可以实现不同像素范围内的BGR设置。

【3】总结

掌握了用numpy创建黑白相间灰度图的技巧。

 

 

相关文章:

python学opencv|读取图像(九)用numpy创建黑白相间灰度图

【1】引言 前述学习过程中,掌握了用numpy创建矩阵数据,把所有像素点的BGR取值设置为0,然后创建纯黑灰度图的方法,具体链接为: python学opencv|读取图像(八)用numpy创建纯黑灰度图-CSDN博客 在…...

AtCoder Beginner Contest 383

C - Humidifier 3 Description 一个 h w h \times w hw 的网格,每个格子可能是墙、空地或者城堡。 一个格子是好的,当且仅当从至少一个城堡出发,走不超过 d d d 步能到达。(只能上下左右走,不能穿墙)&…...

20. 内置模块

一、random模块 random 模块用来创建随机数的模块。 random.random() # 随机生成一个大于0且小于1之间的小数 random.randint(a, b) # 随机生成一个大于等于a小于等于b的随机整数 random.uniform(a, b) …...

《知识拓展 · 统一建模语言UML》

📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...

计算机网络-Wireshark探索ARP

使用工具 Wiresharkarp: To inspect and clear the cache used by the ARP protocol on your computer.curl(MacOS)ifconfig(MacOS or Linux): to inspect the state of your computer’s network interface.route/netstat: To inspect the routes used by your computer.Brows…...

减少30%人工处理时间,AI OCR与表格识别助力医疗化验单快速处理

在医疗行业,化验单作为重要的诊断依据和数据来源,涉及大量的文字和表格信息,传统的手工输入和数据处理方式不仅繁琐,而且容易出错,给医院的运营效率和数据准确性带来较大挑战。随着人工智能技术的快速发展,…...

1.2.3计算机软件

一个完整的计算机系统由硬件和软件组成,用户使用软件,而软件运行在硬件之上,软件进一步的划分为两类:应用软件和系统软件。普通用户通常只会跟应用软件打交道。应用软件是为了解决用户的某种特定的需求而研发出来的。除了每个人都…...

二、uni-forms

避坑指南:uni-forms表单在uni-app中的实践经验-CSDN博客...

Android13开机向导

文章目录 前言需求-场景第三方资料说明需求思路按照平台 思路 从配置上去 feature换个思路,去feature。SimMissingActivity 判断跳过逻辑SetupWizardUtils 判断SIM 、 hasSystemFeature FEATURE_TELEPHONYPackageManager.FEATURE_TELEPHONYApplicationPackageManage…...

软件测试丨Appium 源码分析与定制

在本文中,我们将深入Appium的源码,探索它的底层架构、定制化使用方法和给软件测试带来的优势。我们将详细介绍这些技术如何解决实际问题,并与大家分享一些实用的案例,以帮助读者更好地理解和应用这一技术。 Appium简介 什么是App…...

1.网络知识-IP与子网掩码的关系及计算实例

IP与子网掩码 说实话,之前没有注意过,今天我打开自己的办公地电脑,看到我的网络配置如下: 我看到我的子网掩码是255.255.254.0,我就奇怪了,我经常见到的子网掩码都是255.255.255.0啊?难道公司配…...

Android中Gradle常用配置

前言 本文记录了一些常用的gradle配置,基本上都是平时开发中可能会使用到的,如果有新内容会不定时更新,附官网 1.依赖库版本写法 不推荐写法: dependencies {compile com.example.code.abc:def:2. // 不推荐的写法 }这样写虽然可…...

Linux操作系统3-文件与IO操作2(文件描述符fd与文件重定向)

上篇文章:Linux操作系统3-文件与IO操作1(从C语言IO操作到系统调用)-CSDN博客 本篇代码Gitee仓库:myLerningCode 橘子真甜/Linux操作系统与网络编程学习 - 码云 - 开源中国 (gitee.com) 本篇重点:文件描述符fd与文件重定向 目录 一. 文件描述…...

k8s调度策略

调度策略 binpack(装箱策略) Binpacking策略(又称装箱问题)是一种优化算法,用于将物品有效地放入容器(或“箱子”)中,使得所使用的容器数量最少,Kubernetes等集群管理系…...

uniapp中父组件传参到子组件页面渲染不生效问题处理实战记录

上篇文件介绍了,父组件数据更新正常但是页面渲染不生效的问题,详情可以看下:uniapp中父组件数组更新后与页面渲染数组不一致实战记录 本文在此基础上由于新增需求衍生出新的问题.本文只记录一下解决思路. 下面说下新增需求方便理解场景: 商品信息设置中添加抽奖概率设置…...

螺丝螺帽缺陷检测识别数据集,支持yolo,coco,voc三种格式的标记,一共3081张图片

螺丝螺帽缺陷检测识别数据集,支持yolo,coco,voc三种格式的标记,一共3081张图片 3081总图像数 数据集分割 训练组90% 2781图片 有效集7% 220图片 测试集3% 80图片 预处理…...

一个简单带颜色的Map

越简单 越实用。越少设计,越易懂。 需求背景: 创建方法,声明一个hashset, 元素为 {“#DE3200”, “#FA8C00”, “#027B00”, “#27B600”, “#5EB600”} 。 对应的key为 key1 、key2、key3、key4、key5。 封装该方法&#xff0c…...

kubeadm安装K8s集群之基础环境配置

系列文章目录 1.kubeadm安装K8s集群之基础环境配置 2.kubeadm安装K8s集群之高可用组件keepalivednginx 3.kubeadm安装K8s集群之master节点加入 4.kubeadm安装K8s集群之worker1节点加入 kubeadm安装K8s集群基础环境配置 1.首先确保所有机器可以通信,然后配置主机host…...

前端实现在线预览excel文件

在前端开发中,经常会遇到需要在线预览各种文件的需求。本文将介绍如何使用前端技术实现在线预览 Excel 文件的功能。 一、基于微软office服务的excel预览 获取要预览的 Excel 文件的 URL(例如存储在 OneDrive 或 SharePoint 上的文件)。 使…...

关于idea-Java-servlet-Tomcat-Web开发中出现404NOT FOUND问题的解决

在做web项目时,第一次使用servlet开发链接前端和后端的操作,果不其然,遇到了诸多问题,而遇到最多的就是运行项目打开页面时出现404NOT FOUND的情况。因为这个问题我也是鼓捣了好久,上网查了许多资料才最终解决&#xf…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

用docker来安装部署freeswitch记录

今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

spring boot使用HttpServletResponse实现sse后端流式输出消息

1.以前只是看过SSE的相关文章,没有具体实践,这次接入AI大模型使用到了流式输出,涉及到给前端流式返回,所以记录一下。 2.resp要设置为text/event-stream resp.setContentType("text/event-stream"); resp.setCharacter…...

PostgreSQL 与 SQL 基础:为 Fast API 打下数据基础

在构建任何动态、数据驱动的Web API时,一个稳定高效的数据存储方案是不可或缺的。对于使用Python FastAPI的开发者来说,深入理解关系型数据库的工作原理、掌握SQL这门与数据库“对话”的语言,以及学会如何在Python中操作数据库,是…...