当前位置: 首页 > news >正文

OpenMMlab导出MaskFormer/Mask2Former模型并用onnxruntime和tensorrt推理

onnxruntime推理

使用mmdeploy导出onnx模型:

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK# img = './bus.jpg'
# work_dir = './work_dir/onnx/maskformer'
# save_file = './end2end.onnx'
# deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_onnxruntime_dynamic.py'
# model_cfg = '../mmdetection-3.3.0/configs/maskformer/maskformer_r50_ms-16xb1-75e_coco.py'
# model_checkpoint = '../checkpoints/maskformer_r50_ms-16xb1-75e_coco_20230116_095226-baacd858.pth'
# device = 'cpu'img = './bus.jpg'
work_dir = './work_dir/onnx/mask2former'
save_file = './end2end.onnx'
deploy_cfg =  './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_onnxruntime_dynamic.py'
model_cfg = '../mmdetection-3.3.0/configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'
model_checkpoint = '../checkpoints/mask2former_r50_8xb2-lsj-50e_coco_20220506_191028-41b088b6.pth'
device = 'cpu'# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

自行编写python推理脚本,目前SDK尚未支持:

import cv2
import numpy as np
import onnxruntime
# import torch
# import torch.nn.functional as Fnum_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800) 
palette = [ ]
for i in range(num_classes):palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))def resize_keep_ratio(image, img_scale):h, w = image.shape[0], image.shape[1]max_long_edge = max(img_scale)max_short_edge = min(img_scale)scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))scale_w = int(w * float(scale_factor ) + 0.5)scale_h = int(h * float(scale_factor ) + 0.5)img_new = cv2.resize(image, (scale_w, scale_h))return img_newdef draw_binary_masks(img, binary_masks, colors, alphas=0.8):binary_masks = binary_masks.astype('uint8') * 255binary_mask_len = binary_masks.shape[0]alphas = [alphas] * binary_mask_lenfor binary_mask, color, alpha in zip(binary_masks, colors, alphas):binary_mask_complement = cv2.bitwise_not(binary_mask)rgb = np.zeros_like(img)rgb[...] = colorrgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)rgb = rgb + img_complementimg = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)cv2.imwrite("output.jpg", img)if __name__=="__main__":image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')image_resize = resize_keep_ratio(image, resize_shape) input = image_resize[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHWinput[0,:] = (input[0,:] - 123.675) / 58.395   input[1,:] = (input[1,:] - 116.28) / 57.12input[2,:] = (input[2,:] - 103.53) / 57.375input = np.expand_dims(input, axis=0)import ctypesctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/onnxruntime.dll')session_options = onnxruntime.SessionOptions()session_options.register_custom_ops_library('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_onnxruntime_ops.dll') onnx_session = onnxruntime.InferenceSession('E:/vscode_workspace/mmdeploy-1.3.1/work_dir/onnx/mask2former/end2end.onnx', session_options, providers=['CPUExecutionProvider'])input_name = []for node in onnx_session.get_inputs():input_name.append(node.name)output_name=[]for node in onnx_session.get_outputs():output_name.append(node.name)inputs = {}for name in input_name:inputs[name] = inputoutputs = onnx_session.run(None, inputs)batch_cls_logits = outputs[0]batch_mask_logits = outputs[1]mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))for i in range(mask_pred_results.shape[0]):mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)mask_cls = batch_cls_logits[0]#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)#mask_pred = mask_pred.sigmoid()mask_pred = 1/ (1 + np.exp(-mask_pred))#keep = labels.ne(num_classes) & (scores > object_mask_thr)keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)cur_scores = scores[keep]cur_classes = labels[keep]cur_masks = mask_pred[keep]#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_maskscur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masksh, w = cur_masks.shape[-2:]panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)cur_mask_ids = cur_prob_masks.argmax(0)instance_id = 1for k in range(cur_classes.shape[0]):pred_class = int(cur_classes[k].item())isthing = pred_class < num_things_classesmask = cur_mask_ids == kmask_area = mask.sum().item()original_area = (cur_masks[k] >= 0.5).sum().item()if mask_area > 0 and original_area > 0:if mask_area / original_area < iou_thr:continueif not isthing:panoptic_seg[mask] = pred_classelse:panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)instance_id += 1ids = np.unique(panoptic_seg)[::-1]ids = ids[ids != num_classes]labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)segms = (panoptic_seg[None] == ids[:, None, None])colors = [palette[label] for label in labels]draw_binary_masks(image, segms, colors)

tensorrt推理

使用mmdeploy导出engine模型:

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.tensorrt.onnx2tensorrt import onnx2tensorrt
from mmdeploy.backend.sdk.export_info import export2SDK
import os# img = 'bus.jpg'
# work_dir = './work_dir/trt/maskformer'
# save_file = './end2end.onnx'
# deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_tensorrt_static-1067x800.py'
# model_cfg = '../mmdetection-3.3.0/configs/maskformer/maskformer_r50_ms-16xb1-75e_coco.py'
# model_checkpoint = '../checkpoints/maskformer_r50_ms-16xb1-75e_coco_20230116_095226-baacd858.pth'
# device = 'cuda'img = 'bus.jpg'
work_dir = './work_dir/trt/mask2former'
save_file = './end2end.onnx'
deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_tensorrt_static-1088x800.py'
model_cfg = '../mmdetection-3.3.0/configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'
model_checkpoint = '../checkpoints/mask2former_r50_8xb2-lsj-50e_coco_20220506_191028-41b088b6.pth'
device = 'cuda'# 1. convert model to IR(onnx)
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)# 2. convert IR to tensorrt
onnx_model = os.path.join(work_dir, save_file)
save_file = 'end2end.engine'
model_id = 0
device = 'cuda'
onnx2tensorrt(work_dir, save_file, model_id, deploy_cfg, onnx_model, device)# 3. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)

自行编写python推理脚本,目前SDK尚未支持:
maskformer

import cv2
import ctypes
import numpy as np
import tensorrt as trt
import pycuda.autoinit 
import pycuda.driver as cuda  num_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800) 
palette = [ ]
for i in range(num_classes):palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))def resize_keep_ratio(image, img_scale):h, w = image.shape[0], image.shape[1]max_long_edge = max(img_scale)max_short_edge = min(img_scale)scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))scale_w = int(w * float(scale_factor ) + 0.5)scale_h = int(h * float(scale_factor ) + 0.5)img_new = cv2.resize(image, (scale_w, scale_h))return img_newdef draw_binary_masks(img, binary_masks, colors, alphas=0.8):binary_masks = binary_masks.astype('uint8') * 255binary_mask_len = binary_masks.shape[0]alphas = [alphas] * binary_mask_lenfor binary_mask, color, alpha in zip(binary_masks, colors, alphas):binary_mask_complement = cv2.bitwise_not(binary_mask)rgb = np.zeros_like(img)rgb[...] = colorrgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)rgb = rgb + img_complementimg = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)cv2.imwrite("output.jpg", img)if __name__=="__main__":logger = trt.Logger(trt.Logger.WARNING)ctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_tensorrt_ops.dll')with open("E:/vscode_workspace/mmdeploy-1.3.1/work_dir/trt/maskformer/end2end.engine", "rb") as f, trt.Runtime(logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())context = engine.create_execution_context()h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)h_output0 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)h_output1 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(2)), dtype=np.float32)d_input = cuda.mem_alloc(h_input.nbytes)d_output0 = cuda.mem_alloc(h_output0.nbytes)d_output1 = cuda.mem_alloc(h_output1.nbytes)stream = cuda.Stream()image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')image_resize = resize_keep_ratio(image, resize_shape) input = image_resize[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHWinput[0,:] = (input[0,:] - 123.675) / 58.395   input[1,:] = (input[1,:] - 116.28) / 57.12input[2,:] = (input[2,:] - 103.53) / 57.375h_input = input.flatten()with engine.create_execution_context() as context:cuda.memcpy_htod_async(d_input, h_input, stream)context.execute_async_v2(bindings=[int(d_input), int(d_output0), int(d_output1)], stream_handle=stream.handle)cuda.memcpy_dtoh_async(h_output0, d_output0, stream)cuda.memcpy_dtoh_async(h_output1, d_output1, stream)stream.synchronize()  batch_cls_logits = h_output0.reshape(context.get_binding_shape(1))batch_mask_logits = h_output1.reshape(context.get_binding_shape(2))mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))for i in range(mask_pred_results.shape[0]):mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)mask_cls = batch_cls_logits[0]#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)#mask_pred = mask_pred.sigmoid()mask_pred = 1/ (1 + np.exp(-mask_pred))#keep = labels.ne(num_classes) & (scores > object_mask_thr)keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)cur_scores = scores[keep]cur_classes = labels[keep]cur_masks = mask_pred[keep]#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_maskscur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masksh, w = cur_masks.shape[-2:]panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)cur_mask_ids = cur_prob_masks.argmax(0)instance_id = 1for k in range(cur_classes.shape[0]):pred_class = int(cur_classes[k].item())isthing = pred_class < num_things_classesmask = cur_mask_ids == kmask_area = mask.sum().item()original_area = (cur_masks[k] >= 0.5).sum().item()if mask_area > 0 and original_area > 0:if mask_area / original_area < iou_thr:continueif not isthing:panoptic_seg[mask] = pred_classelse:panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)instance_id += 1ids = np.unique(panoptic_seg)[::-1]ids = ids[ids != num_classes]labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)segms = (panoptic_seg[None] == ids[:, None, None])max_label = int(max(labels) if len(labels) > 0 else 0)colors = [palette[label] for label in labels]draw_binary_masks(image, segms, colors)

mask2former

import cv2
import ctypes
import numpy as np
import tensorrt as trt
import pycuda.autoinit 
import pycuda.driver as cuda  num_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800) 
palette = [ ]
for i in range(num_classes):palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))def resize_keep_ratio(image, img_scale):h, w = image.shape[0], image.shape[1]max_long_edge = max(img_scale)max_short_edge = min(img_scale)scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))scale_w = int(w * float(scale_factor ) + 0.5)scale_h = int(h * float(scale_factor ) + 0.5)img_new = cv2.resize(image, (scale_w, scale_h))return img_newdef draw_binary_masks(img, binary_masks, colors, alphas=0.8):binary_masks = binary_masks.astype('uint8') * 255binary_mask_len = binary_masks.shape[0]alphas = [alphas] * binary_mask_lenfor binary_mask, color, alpha in zip(binary_masks, colors, alphas):binary_mask_complement = cv2.bitwise_not(binary_mask)rgb = np.zeros_like(img)rgb[...] = colorrgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)rgb = rgb + img_complementimg = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)cv2.imwrite("output.jpg", img)if __name__=="__main__":logger = trt.Logger(trt.Logger.WARNING)ctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_tensorrt_ops.dll')with open("E:/vscode_workspace/mmdeploy-1.3.1/work_dir/trt/mask2former/end2end.engine", "rb") as f, trt.Runtime(logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())context = engine.create_execution_context()h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)h_output0 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)h_output1 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(2)), dtype=np.float32)d_input = cuda.mem_alloc(h_input.nbytes)d_output0 = cuda.mem_alloc(h_output0.nbytes)d_output1 = cuda.mem_alloc(h_output1.nbytes)stream = cuda.Stream()image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')image_resize = resize_keep_ratio(image, resize_shape) scale = (image.shape[0]/image_resize.shape[0], image.shape[1]/image_resize.shape[1])pad_shape = (np.ceil(image_resize.shape[1]/32)*32, np.ceil(image_resize.shape[0]/32)*32) pad_x, pad_y = int(pad_shape[0]-image_resize.shape[1]), int(pad_shape[1]-image_resize.shape[0])image_pad = cv2.copyMakeBorder(image_resize, 0, pad_y, 0, pad_x, cv2.BORDER_CONSTANT, value=0)input = image_pad[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW   input[0,:] = (input[0,:] - 123.675) / 58.395   input[1,:] = (input[1,:] - 116.28) / 57.12input[2,:] = (input[2,:] - 103.53) / 57.375h_input = input.flatten()with engine.create_execution_context() as context:cuda.memcpy_htod_async(d_input, h_input, stream)context.execute_async_v2(bindings=[int(d_input), int(d_output0), int(d_output1)], stream_handle=stream.handle)cuda.memcpy_dtoh_async(h_output0, d_output0, stream)cuda.memcpy_dtoh_async(h_output1, d_output1, stream)stream.synchronize()  batch_cls_logits = h_output0.reshape(context.get_binding_shape(1))batch_mask_logits = h_output1.reshape(context.get_binding_shape(2))mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))for i in range(mask_pred_results.shape[0]):mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)mask_cls = batch_cls_logits[0]#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)#mask_pred = mask_pred.sigmoid()mask_pred = 1/ (1 + np.exp(-mask_pred))#keep = labels.ne(num_classes) & (scores > object_mask_thr)keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)cur_scores = scores[keep]cur_classes = labels[keep]cur_masks = mask_pred[keep]#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_maskscur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masksh, w = cur_masks.shape[-2:]panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)cur_mask_ids = cur_prob_masks.argmax(0)instance_id = 1for k in range(cur_classes.shape[0]):pred_class = int(cur_classes[k].item())isthing = pred_class < num_things_classesmask = cur_mask_ids == kmask_area = mask.sum().item()original_area = (cur_masks[k] >= 0.5).sum().item()if mask_area > 0 and original_area > 0:if mask_area / original_area < iou_thr:continueif not isthing:panoptic_seg[mask] = pred_classelse:panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)instance_id += 1ids = np.unique(panoptic_seg)[::-1]ids = ids[ids != num_classes]labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)segms = (panoptic_seg[None] == ids[:, None, None])max_label = int(max(labels) if len(labels) > 0 else 0)colors = [palette[label] for label in labels]draw_binary_masks(image, segms, colors)

推理结果:
在这里插入图片描述

相关文章:

OpenMMlab导出MaskFormer/Mask2Former模型并用onnxruntime和tensorrt推理

onnxruntime推理 使用mmdeploy导出onnx模型&#xff1a; from mmdeploy.apis import torch2onnx from mmdeploy.backend.sdk.export_info import export2SDK# img ./bus.jpg # work_dir ./work_dir/onnx/maskformer # save_file ./end2end.onnx # deploy_cfg ./configs/m…...

若依微服务中配置 MySQL + DM 多数据源

文章目录 1、导入 MySQL 和达梦&#xff08;DM&#xff09;依赖2、在 application-druid.yml 中配置达梦&#xff08;DM&#xff09;数据源3、在 DruidConfig 类中配置多数据源信息4、在 Service 层或方法级别切换数据源4.1 在 Service 类上切换到从库数据源4.2 在方法级别切换…...

一些前端组件介绍

wangEditor &#xff1a; 一款开源 Web 富文本编辑器&#xff0c;可用于 jQuery Vue React等 https://www.wangeditor.com/ Handsontable&#xff1a;一款前端可编辑电子表格https://blog.csdn.net/carcarrot/article/details/108492356mitt&#xff1a;Mitt 是一个在 Vue.js 应…...

python学opencv|读取图像(九)用numpy创建黑白相间灰度图

【1】引言 前述学习过程中&#xff0c;掌握了用numpy创建矩阵数据&#xff0c;把所有像素点的BGR取值设置为0&#xff0c;然后创建纯黑灰度图的方法&#xff0c;具体链接为&#xff1a; python学opencv|读取图像&#xff08;八&#xff09;用numpy创建纯黑灰度图-CSDN博客 在…...

AtCoder Beginner Contest 383

C - Humidifier 3 Description 一个 h w h \times w hw 的网格&#xff0c;每个格子可能是墙、空地或者城堡。 一个格子是好的&#xff0c;当且仅当从至少一个城堡出发&#xff0c;走不超过 d d d 步能到达。&#xff08;只能上下左右走&#xff0c;不能穿墙&#xff09;&…...

20. 内置模块

一、random模块 random 模块用来创建随机数的模块。 random.random() # 随机生成一个大于0且小于1之间的小数 random.randint(a, b) # 随机生成一个大于等于a小于等于b的随机整数 random.uniform(a, b) …...

《知识拓展 · 统一建模语言UML》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

计算机网络-Wireshark探索ARP

使用工具 Wiresharkarp: To inspect and clear the cache used by the ARP protocol on your computer.curl(MacOS)ifconfig(MacOS or Linux): to inspect the state of your computer’s network interface.route/netstat: To inspect the routes used by your computer.Brows…...

减少30%人工处理时间,AI OCR与表格识别助力医疗化验单快速处理

在医疗行业&#xff0c;化验单作为重要的诊断依据和数据来源&#xff0c;涉及大量的文字和表格信息&#xff0c;传统的手工输入和数据处理方式不仅繁琐&#xff0c;而且容易出错&#xff0c;给医院的运营效率和数据准确性带来较大挑战。随着人工智能技术的快速发展&#xff0c;…...

1.2.3计算机软件

一个完整的计算机系统由硬件和软件组成&#xff0c;用户使用软件&#xff0c;而软件运行在硬件之上&#xff0c;软件进一步的划分为两类&#xff1a;应用软件和系统软件。普通用户通常只会跟应用软件打交道。应用软件是为了解决用户的某种特定的需求而研发出来的。除了每个人都…...

二、uni-forms

避坑指南&#xff1a;uni-forms表单在uni-app中的实践经验-CSDN博客...

Android13开机向导

文章目录 前言需求-场景第三方资料说明需求思路按照平台 思路 从配置上去 feature换个思路&#xff0c;去feature。SimMissingActivity 判断跳过逻辑SetupWizardUtils 判断SIM 、 hasSystemFeature FEATURE_TELEPHONYPackageManager.FEATURE_TELEPHONYApplicationPackageManage…...

软件测试丨Appium 源码分析与定制

在本文中&#xff0c;我们将深入Appium的源码&#xff0c;探索它的底层架构、定制化使用方法和给软件测试带来的优势。我们将详细介绍这些技术如何解决实际问题&#xff0c;并与大家分享一些实用的案例&#xff0c;以帮助读者更好地理解和应用这一技术。 Appium简介 什么是App…...

1.网络知识-IP与子网掩码的关系及计算实例

IP与子网掩码 说实话&#xff0c;之前没有注意过&#xff0c;今天我打开自己的办公地电脑&#xff0c;看到我的网络配置如下&#xff1a; 我看到我的子网掩码是255.255.254.0&#xff0c;我就奇怪了&#xff0c;我经常见到的子网掩码都是255.255.255.0啊&#xff1f;难道公司配…...

Android中Gradle常用配置

前言 本文记录了一些常用的gradle配置&#xff0c;基本上都是平时开发中可能会使用到的&#xff0c;如果有新内容会不定时更新&#xff0c;附官网 1.依赖库版本写法 不推荐写法&#xff1a; dependencies {compile com.example.code.abc:def:2. // 不推荐的写法 }这样写虽然可…...

Linux操作系统3-文件与IO操作2(文件描述符fd与文件重定向)

上篇文章&#xff1a;Linux操作系统3-文件与IO操作1(从C语言IO操作到系统调用)-CSDN博客 本篇代码Gitee仓库&#xff1a;myLerningCode 橘子真甜/Linux操作系统与网络编程学习 - 码云 - 开源中国 (gitee.com) 本篇重点&#xff1a;文件描述符fd与文件重定向 目录 一. 文件描述…...

k8s调度策略

调度策略 binpack&#xff08;装箱策略&#xff09; Binpacking策略&#xff08;又称装箱问题&#xff09;是一种优化算法&#xff0c;用于将物品有效地放入容器&#xff08;或“箱子”&#xff09;中&#xff0c;使得所使用的容器数量最少&#xff0c;Kubernetes等集群管理系…...

uniapp中父组件传参到子组件页面渲染不生效问题处理实战记录

上篇文件介绍了,父组件数据更新正常但是页面渲染不生效的问题,详情可以看下:uniapp中父组件数组更新后与页面渲染数组不一致实战记录 本文在此基础上由于新增需求衍生出新的问题.本文只记录一下解决思路. 下面说下新增需求方便理解场景: 商品信息设置中添加抽奖概率设置…...

螺丝螺帽缺陷检测识别数据集,支持yolo,coco,voc三种格式的标记,一共3081张图片

螺丝螺帽缺陷检测识别数据集&#xff0c;支持yolo&#xff0c;coco&#xff0c;voc三种格式的标记&#xff0c;一共3081张图片 3081总图像数 数据集分割 训练组90&#xff05; 2781图片 有效集7% 220图片 测试集3% 80图片 预处理…...

一个简单带颜色的Map

越简单 越实用。越少设计&#xff0c;越易懂。 需求背景&#xff1a; 创建方法&#xff0c;声明一个hashset&#xff0c; 元素为 {“#DE3200”, “#FA8C00”, “#027B00”, “#27B600”, “#5EB600”} 。 对应的key为 key1 、key2、key3、key4、key5。 封装该方法&#xff0c…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...

在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7

在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤&#xff1a; 第一步&#xff1a; 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为&#xff1a; // 改为 v…...