OpenMMlab导出MaskFormer/Mask2Former模型并用onnxruntime和tensorrt推理
onnxruntime推理
使用mmdeploy导出onnx模型:
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDK# img = './bus.jpg'
# work_dir = './work_dir/onnx/maskformer'
# save_file = './end2end.onnx'
# deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_onnxruntime_dynamic.py'
# model_cfg = '../mmdetection-3.3.0/configs/maskformer/maskformer_r50_ms-16xb1-75e_coco.py'
# model_checkpoint = '../checkpoints/maskformer_r50_ms-16xb1-75e_coco_20230116_095226-baacd858.pth'
# device = 'cpu'img = './bus.jpg'
work_dir = './work_dir/onnx/mask2former'
save_file = './end2end.onnx'
deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_onnxruntime_dynamic.py'
model_cfg = '../mmdetection-3.3.0/configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'
model_checkpoint = '../checkpoints/mask2former_r50_8xb2-lsj-50e_coco_20220506_191028-41b088b6.pth'
device = 'cpu'# 1. convert model to onnx
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)# 2. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
自行编写python推理脚本,目前SDK尚未支持:
import cv2
import numpy as np
import onnxruntime
# import torch
# import torch.nn.functional as Fnum_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800)
palette = [ ]
for i in range(num_classes):palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))def resize_keep_ratio(image, img_scale):h, w = image.shape[0], image.shape[1]max_long_edge = max(img_scale)max_short_edge = min(img_scale)scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))scale_w = int(w * float(scale_factor ) + 0.5)scale_h = int(h * float(scale_factor ) + 0.5)img_new = cv2.resize(image, (scale_w, scale_h))return img_newdef draw_binary_masks(img, binary_masks, colors, alphas=0.8):binary_masks = binary_masks.astype('uint8') * 255binary_mask_len = binary_masks.shape[0]alphas = [alphas] * binary_mask_lenfor binary_mask, color, alpha in zip(binary_masks, colors, alphas):binary_mask_complement = cv2.bitwise_not(binary_mask)rgb = np.zeros_like(img)rgb[...] = colorrgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)rgb = rgb + img_complementimg = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)cv2.imwrite("output.jpg", img)if __name__=="__main__":image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')image_resize = resize_keep_ratio(image, resize_shape) input = image_resize[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32) #BGR2RGB和HWC2CHWinput[0,:] = (input[0,:] - 123.675) / 58.395 input[1,:] = (input[1,:] - 116.28) / 57.12input[2,:] = (input[2,:] - 103.53) / 57.375input = np.expand_dims(input, axis=0)import ctypesctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/onnxruntime.dll')session_options = onnxruntime.SessionOptions()session_options.register_custom_ops_library('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_onnxruntime_ops.dll') onnx_session = onnxruntime.InferenceSession('E:/vscode_workspace/mmdeploy-1.3.1/work_dir/onnx/mask2former/end2end.onnx', session_options, providers=['CPUExecutionProvider'])input_name = []for node in onnx_session.get_inputs():input_name.append(node.name)output_name=[]for node in onnx_session.get_outputs():output_name.append(node.name)inputs = {}for name in input_name:inputs[name] = inputoutputs = onnx_session.run(None, inputs)batch_cls_logits = outputs[0]batch_mask_logits = outputs[1]mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))for i in range(mask_pred_results.shape[0]):mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)mask_cls = batch_cls_logits[0]#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)#mask_pred = mask_pred.sigmoid()mask_pred = 1/ (1 + np.exp(-mask_pred))#keep = labels.ne(num_classes) & (scores > object_mask_thr)keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)cur_scores = scores[keep]cur_classes = labels[keep]cur_masks = mask_pred[keep]#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_maskscur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masksh, w = cur_masks.shape[-2:]panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)cur_mask_ids = cur_prob_masks.argmax(0)instance_id = 1for k in range(cur_classes.shape[0]):pred_class = int(cur_classes[k].item())isthing = pred_class < num_things_classesmask = cur_mask_ids == kmask_area = mask.sum().item()original_area = (cur_masks[k] >= 0.5).sum().item()if mask_area > 0 and original_area > 0:if mask_area / original_area < iou_thr:continueif not isthing:panoptic_seg[mask] = pred_classelse:panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)instance_id += 1ids = np.unique(panoptic_seg)[::-1]ids = ids[ids != num_classes]labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)segms = (panoptic_seg[None] == ids[:, None, None])colors = [palette[label] for label in labels]draw_binary_masks(image, segms, colors)
tensorrt推理
使用mmdeploy导出engine模型:
from mmdeploy.apis import torch2onnx
from mmdeploy.backend.tensorrt.onnx2tensorrt import onnx2tensorrt
from mmdeploy.backend.sdk.export_info import export2SDK
import os# img = 'bus.jpg'
# work_dir = './work_dir/trt/maskformer'
# save_file = './end2end.onnx'
# deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_tensorrt_static-1067x800.py'
# model_cfg = '../mmdetection-3.3.0/configs/maskformer/maskformer_r50_ms-16xb1-75e_coco.py'
# model_checkpoint = '../checkpoints/maskformer_r50_ms-16xb1-75e_coco_20230116_095226-baacd858.pth'
# device = 'cuda'img = 'bus.jpg'
work_dir = './work_dir/trt/mask2former'
save_file = './end2end.onnx'
deploy_cfg = './configs/mmdet/panoptic-seg/panoptic-seg_maskformer_tensorrt_static-1088x800.py'
model_cfg = '../mmdetection-3.3.0/configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco.py'
model_checkpoint = '../checkpoints/mask2former_r50_8xb2-lsj-50e_coco_20220506_191028-41b088b6.pth'
device = 'cuda'# 1. convert model to IR(onnx)
torch2onnx(img, work_dir, save_file, deploy_cfg, model_cfg, model_checkpoint, device)# 2. convert IR to tensorrt
onnx_model = os.path.join(work_dir, save_file)
save_file = 'end2end.engine'
model_id = 0
device = 'cuda'
onnx2tensorrt(work_dir, save_file, model_id, deploy_cfg, onnx_model, device)# 3. extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg, model_cfg, work_dir, pth=model_checkpoint, device=device)
自行编写python推理脚本,目前SDK尚未支持:
maskformer
import cv2
import ctypes
import numpy as np
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda num_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800)
palette = [ ]
for i in range(num_classes):palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))def resize_keep_ratio(image, img_scale):h, w = image.shape[0], image.shape[1]max_long_edge = max(img_scale)max_short_edge = min(img_scale)scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))scale_w = int(w * float(scale_factor ) + 0.5)scale_h = int(h * float(scale_factor ) + 0.5)img_new = cv2.resize(image, (scale_w, scale_h))return img_newdef draw_binary_masks(img, binary_masks, colors, alphas=0.8):binary_masks = binary_masks.astype('uint8') * 255binary_mask_len = binary_masks.shape[0]alphas = [alphas] * binary_mask_lenfor binary_mask, color, alpha in zip(binary_masks, colors, alphas):binary_mask_complement = cv2.bitwise_not(binary_mask)rgb = np.zeros_like(img)rgb[...] = colorrgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)rgb = rgb + img_complementimg = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)cv2.imwrite("output.jpg", img)if __name__=="__main__":logger = trt.Logger(trt.Logger.WARNING)ctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_tensorrt_ops.dll')with open("E:/vscode_workspace/mmdeploy-1.3.1/work_dir/trt/maskformer/end2end.engine", "rb") as f, trt.Runtime(logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())context = engine.create_execution_context()h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)h_output0 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)h_output1 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(2)), dtype=np.float32)d_input = cuda.mem_alloc(h_input.nbytes)d_output0 = cuda.mem_alloc(h_output0.nbytes)d_output1 = cuda.mem_alloc(h_output1.nbytes)stream = cuda.Stream()image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')image_resize = resize_keep_ratio(image, resize_shape) input = image_resize[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32) #BGR2RGB和HWC2CHWinput[0,:] = (input[0,:] - 123.675) / 58.395 input[1,:] = (input[1,:] - 116.28) / 57.12input[2,:] = (input[2,:] - 103.53) / 57.375h_input = input.flatten()with engine.create_execution_context() as context:cuda.memcpy_htod_async(d_input, h_input, stream)context.execute_async_v2(bindings=[int(d_input), int(d_output0), int(d_output1)], stream_handle=stream.handle)cuda.memcpy_dtoh_async(h_output0, d_output0, stream)cuda.memcpy_dtoh_async(h_output1, d_output1, stream)stream.synchronize() batch_cls_logits = h_output0.reshape(context.get_binding_shape(1))batch_mask_logits = h_output1.reshape(context.get_binding_shape(2))mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))for i in range(mask_pred_results.shape[0]):mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)mask_cls = batch_cls_logits[0]#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)#mask_pred = mask_pred.sigmoid()mask_pred = 1/ (1 + np.exp(-mask_pred))#keep = labels.ne(num_classes) & (scores > object_mask_thr)keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)cur_scores = scores[keep]cur_classes = labels[keep]cur_masks = mask_pred[keep]#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_maskscur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masksh, w = cur_masks.shape[-2:]panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)cur_mask_ids = cur_prob_masks.argmax(0)instance_id = 1for k in range(cur_classes.shape[0]):pred_class = int(cur_classes[k].item())isthing = pred_class < num_things_classesmask = cur_mask_ids == kmask_area = mask.sum().item()original_area = (cur_masks[k] >= 0.5).sum().item()if mask_area > 0 and original_area > 0:if mask_area / original_area < iou_thr:continueif not isthing:panoptic_seg[mask] = pred_classelse:panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)instance_id += 1ids = np.unique(panoptic_seg)[::-1]ids = ids[ids != num_classes]labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)segms = (panoptic_seg[None] == ids[:, None, None])max_label = int(max(labels) if len(labels) > 0 else 0)colors = [palette[label] for label in labels]draw_binary_masks(image, segms, colors)
mask2former
import cv2
import ctypes
import numpy as np
import tensorrt as trt
import pycuda.autoinit
import pycuda.driver as cuda num_classes = 133
num_things_classes = 80
object_mask_thr = 0.8
iou_thr = 0.8
INSTANCE_OFFSET = 1000
resize_shape = (1333, 800)
palette = [ ]
for i in range(num_classes):palette.append((np.random.randint(0, 256), np.random.randint(0, 256), np.random.randint(0, 256)))def resize_keep_ratio(image, img_scale):h, w = image.shape[0], image.shape[1]max_long_edge = max(img_scale)max_short_edge = min(img_scale)scale_factor = min(max_long_edge / max(h, w), max_short_edge / min(h, w))scale_w = int(w * float(scale_factor ) + 0.5)scale_h = int(h * float(scale_factor ) + 0.5)img_new = cv2.resize(image, (scale_w, scale_h))return img_newdef draw_binary_masks(img, binary_masks, colors, alphas=0.8):binary_masks = binary_masks.astype('uint8') * 255binary_mask_len = binary_masks.shape[0]alphas = [alphas] * binary_mask_lenfor binary_mask, color, alpha in zip(binary_masks, colors, alphas):binary_mask_complement = cv2.bitwise_not(binary_mask)rgb = np.zeros_like(img)rgb[...] = colorrgb = cv2.bitwise_and(rgb, rgb, mask=binary_mask)img_complement = cv2.bitwise_and(img, img, mask=binary_mask_complement)rgb = rgb + img_complementimg = cv2.addWeighted(img, 1 - alpha, rgb, alpha, 0)cv2.imwrite("output.jpg", img)if __name__=="__main__":logger = trt.Logger(trt.Logger.WARNING)ctypes.CDLL('E:/vscode_workspace/mmdeploy-1.3.1/mmdeploy/lib/mmdeploy_tensorrt_ops.dll')with open("E:/vscode_workspace/mmdeploy-1.3.1/work_dir/trt/mask2former/end2end.engine", "rb") as f, trt.Runtime(logger) as runtime:engine = runtime.deserialize_cuda_engine(f.read())context = engine.create_execution_context()h_input = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)h_output0 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)h_output1 = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(2)), dtype=np.float32)d_input = cuda.mem_alloc(h_input.nbytes)d_output0 = cuda.mem_alloc(h_output0.nbytes)d_output1 = cuda.mem_alloc(h_output1.nbytes)stream = cuda.Stream()image = cv2.imread('E:/vscode_workspace/mmdeploy-1.3.1/bus.jpg')image_resize = resize_keep_ratio(image, resize_shape) scale = (image.shape[0]/image_resize.shape[0], image.shape[1]/image_resize.shape[1])pad_shape = (np.ceil(image_resize.shape[1]/32)*32, np.ceil(image_resize.shape[0]/32)*32) pad_x, pad_y = int(pad_shape[0]-image_resize.shape[1]), int(pad_shape[1]-image_resize.shape[0])image_pad = cv2.copyMakeBorder(image_resize, 0, pad_y, 0, pad_x, cv2.BORDER_CONSTANT, value=0)input = image_pad[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32) #BGR2RGB和HWC2CHW input[0,:] = (input[0,:] - 123.675) / 58.395 input[1,:] = (input[1,:] - 116.28) / 57.12input[2,:] = (input[2,:] - 103.53) / 57.375h_input = input.flatten()with engine.create_execution_context() as context:cuda.memcpy_htod_async(d_input, h_input, stream)context.execute_async_v2(bindings=[int(d_input), int(d_output0), int(d_output1)], stream_handle=stream.handle)cuda.memcpy_dtoh_async(h_output0, d_output0, stream)cuda.memcpy_dtoh_async(h_output1, d_output1, stream)stream.synchronize() batch_cls_logits = h_output0.reshape(context.get_binding_shape(1))batch_mask_logits = h_output1.reshape(context.get_binding_shape(2))mask_pred_results = batch_mask_logits[0][:, :image.shape[0], :image.shape[1]]#mask_pred = F.interpolate(mask_pred_results[:, None], size=(image.shape[0], image.shape[1]), mode='bilinear', align_corners=False)[:, 0]mask_pred = np.zeros((mask_pred_results.shape[0], image.shape[0], image.shape[1]))for i in range(mask_pred_results.shape[0]):mask_pred[i] = cv2.resize(mask_pred_results[i], dsize=(image.shape[1], image.shape[0]), interpolation=cv2.INTER_LINEAR)mask_cls = batch_cls_logits[0]#scores, labels = F.softmax(torch.Tensor(mask_cls), dim=-1).max(-1)scores = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).max(-1)labels = np.array([np.exp(mask_cls[i]) / np.exp(mask_cls[i]).sum() for i in range(mask_cls.shape[0])]).argmax(-1)#mask_pred = mask_pred.sigmoid()mask_pred = 1/ (1 + np.exp(-mask_pred))#keep = labels.ne(num_classes) & (scores > object_mask_thr)keep = np.not_equal(labels, num_classes) & (scores > object_mask_thr)cur_scores = scores[keep]cur_classes = labels[keep]cur_masks = mask_pred[keep]#cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_maskscur_prob_masks = cur_scores.reshape(-1, 1, 1) * cur_masksh, w = cur_masks.shape[-2:]panoptic_seg = np.full((h, w), num_classes, dtype=np.int32)cur_mask_ids = cur_prob_masks.argmax(0)instance_id = 1for k in range(cur_classes.shape[0]):pred_class = int(cur_classes[k].item())isthing = pred_class < num_things_classesmask = cur_mask_ids == kmask_area = mask.sum().item()original_area = (cur_masks[k] >= 0.5).sum().item()if mask_area > 0 and original_area > 0:if mask_area / original_area < iou_thr:continueif not isthing:panoptic_seg[mask] = pred_classelse:panoptic_seg[mask] = (pred_class + instance_id * INSTANCE_OFFSET)instance_id += 1ids = np.unique(panoptic_seg)[::-1]ids = ids[ids != num_classes]labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)segms = (panoptic_seg[None] == ids[:, None, None])max_label = int(max(labels) if len(labels) > 0 else 0)colors = [palette[label] for label in labels]draw_binary_masks(image, segms, colors)
推理结果:
相关文章:
OpenMMlab导出MaskFormer/Mask2Former模型并用onnxruntime和tensorrt推理
onnxruntime推理 使用mmdeploy导出onnx模型: from mmdeploy.apis import torch2onnx from mmdeploy.backend.sdk.export_info import export2SDK# img ./bus.jpg # work_dir ./work_dir/onnx/maskformer # save_file ./end2end.onnx # deploy_cfg ./configs/m…...
若依微服务中配置 MySQL + DM 多数据源
文章目录 1、导入 MySQL 和达梦(DM)依赖2、在 application-druid.yml 中配置达梦(DM)数据源3、在 DruidConfig 类中配置多数据源信息4、在 Service 层或方法级别切换数据源4.1 在 Service 类上切换到从库数据源4.2 在方法级别切换…...
一些前端组件介绍
wangEditor : 一款开源 Web 富文本编辑器,可用于 jQuery Vue React等 https://www.wangeditor.com/ Handsontable:一款前端可编辑电子表格https://blog.csdn.net/carcarrot/article/details/108492356mitt:Mitt 是一个在 Vue.js 应…...
python学opencv|读取图像(九)用numpy创建黑白相间灰度图
【1】引言 前述学习过程中,掌握了用numpy创建矩阵数据,把所有像素点的BGR取值设置为0,然后创建纯黑灰度图的方法,具体链接为: python学opencv|读取图像(八)用numpy创建纯黑灰度图-CSDN博客 在…...
AtCoder Beginner Contest 383
C - Humidifier 3 Description 一个 h w h \times w hw 的网格,每个格子可能是墙、空地或者城堡。 一个格子是好的,当且仅当从至少一个城堡出发,走不超过 d d d 步能到达。(只能上下左右走,不能穿墙)&…...
20. 内置模块
一、random模块 random 模块用来创建随机数的模块。 random.random() # 随机生成一个大于0且小于1之间的小数 random.randint(a, b) # 随机生成一个大于等于a小于等于b的随机整数 random.uniform(a, b) …...
《知识拓展 · 统一建模语言UML》
📢 大家好,我是 【战神刘玉栋】,有10多年的研发经验,致力于前后端技术栈的知识沉淀和传播。 💗 🌻 CSDN入驻不久,希望大家多多支持,后续会继续提升文章质量,绝不滥竽充数…...
计算机网络-Wireshark探索ARP
使用工具 Wiresharkarp: To inspect and clear the cache used by the ARP protocol on your computer.curl(MacOS)ifconfig(MacOS or Linux): to inspect the state of your computer’s network interface.route/netstat: To inspect the routes used by your computer.Brows…...
减少30%人工处理时间,AI OCR与表格识别助力医疗化验单快速处理
在医疗行业,化验单作为重要的诊断依据和数据来源,涉及大量的文字和表格信息,传统的手工输入和数据处理方式不仅繁琐,而且容易出错,给医院的运营效率和数据准确性带来较大挑战。随着人工智能技术的快速发展,…...
1.2.3计算机软件
一个完整的计算机系统由硬件和软件组成,用户使用软件,而软件运行在硬件之上,软件进一步的划分为两类:应用软件和系统软件。普通用户通常只会跟应用软件打交道。应用软件是为了解决用户的某种特定的需求而研发出来的。除了每个人都…...
二、uni-forms
避坑指南:uni-forms表单在uni-app中的实践经验-CSDN博客...
Android13开机向导
文章目录 前言需求-场景第三方资料说明需求思路按照平台 思路 从配置上去 feature换个思路,去feature。SimMissingActivity 判断跳过逻辑SetupWizardUtils 判断SIM 、 hasSystemFeature FEATURE_TELEPHONYPackageManager.FEATURE_TELEPHONYApplicationPackageManage…...
软件测试丨Appium 源码分析与定制
在本文中,我们将深入Appium的源码,探索它的底层架构、定制化使用方法和给软件测试带来的优势。我们将详细介绍这些技术如何解决实际问题,并与大家分享一些实用的案例,以帮助读者更好地理解和应用这一技术。 Appium简介 什么是App…...
1.网络知识-IP与子网掩码的关系及计算实例
IP与子网掩码 说实话,之前没有注意过,今天我打开自己的办公地电脑,看到我的网络配置如下: 我看到我的子网掩码是255.255.254.0,我就奇怪了,我经常见到的子网掩码都是255.255.255.0啊?难道公司配…...
Android中Gradle常用配置
前言 本文记录了一些常用的gradle配置,基本上都是平时开发中可能会使用到的,如果有新内容会不定时更新,附官网 1.依赖库版本写法 不推荐写法: dependencies {compile com.example.code.abc:def:2. // 不推荐的写法 }这样写虽然可…...
Linux操作系统3-文件与IO操作2(文件描述符fd与文件重定向)
上篇文章:Linux操作系统3-文件与IO操作1(从C语言IO操作到系统调用)-CSDN博客 本篇代码Gitee仓库:myLerningCode 橘子真甜/Linux操作系统与网络编程学习 - 码云 - 开源中国 (gitee.com) 本篇重点:文件描述符fd与文件重定向 目录 一. 文件描述…...
k8s调度策略
调度策略 binpack(装箱策略) Binpacking策略(又称装箱问题)是一种优化算法,用于将物品有效地放入容器(或“箱子”)中,使得所使用的容器数量最少,Kubernetes等集群管理系…...
uniapp中父组件传参到子组件页面渲染不生效问题处理实战记录
上篇文件介绍了,父组件数据更新正常但是页面渲染不生效的问题,详情可以看下:uniapp中父组件数组更新后与页面渲染数组不一致实战记录 本文在此基础上由于新增需求衍生出新的问题.本文只记录一下解决思路. 下面说下新增需求方便理解场景: 商品信息设置中添加抽奖概率设置…...
螺丝螺帽缺陷检测识别数据集,支持yolo,coco,voc三种格式的标记,一共3081张图片
螺丝螺帽缺陷检测识别数据集,支持yolo,coco,voc三种格式的标记,一共3081张图片 3081总图像数 数据集分割 训练组90% 2781图片 有效集7% 220图片 测试集3% 80图片 预处理…...
一个简单带颜色的Map
越简单 越实用。越少设计,越易懂。 需求背景: 创建方法,声明一个hashset, 元素为 {“#DE3200”, “#FA8C00”, “#027B00”, “#27B600”, “#5EB600”} 。 对应的key为 key1 、key2、key3、key4、key5。 封装该方法,…...
kubeadm安装K8s集群之基础环境配置
系列文章目录 1.kubeadm安装K8s集群之基础环境配置 2.kubeadm安装K8s集群之高可用组件keepalivednginx 3.kubeadm安装K8s集群之master节点加入 4.kubeadm安装K8s集群之worker1节点加入 kubeadm安装K8s集群基础环境配置 1.首先确保所有机器可以通信,然后配置主机host…...
前端实现在线预览excel文件
在前端开发中,经常会遇到需要在线预览各种文件的需求。本文将介绍如何使用前端技术实现在线预览 Excel 文件的功能。 一、基于微软office服务的excel预览 获取要预览的 Excel 文件的 URL(例如存储在 OneDrive 或 SharePoint 上的文件)。 使…...
关于idea-Java-servlet-Tomcat-Web开发中出现404NOT FOUND问题的解决
在做web项目时,第一次使用servlet开发链接前端和后端的操作,果不其然,遇到了诸多问题,而遇到最多的就是运行项目打开页面时出现404NOT FOUND的情况。因为这个问题我也是鼓捣了好久,上网查了许多资料才最终解决…...
SCRM私域流量管理工具助力企业微信电商转型升级
内容概要 在当今数字化时代,SCRM(社交客户关系管理)私域流量管理工具正逐渐成为企业转型的重要助力。尤其是在电商领域,企业微信的兴起为许多公司打开了新的销售渠道,通过SCRM系统的高效整合,企业能够更加…...
三相异步电动机为什么能够旋转?
三相异步电动机,作为一种广泛应用于工业、农业及其他领域的电动机,其工作原理的理解对于工程技术人员以及相关从业者来说至关重要。 一、三相异步电动机的基本结构 三相异步电动机主要由定子、转子和机壳组成。定子是电动机的静止部分,包含…...
优化移动端H5:常见问题与解决方案
移动端H5开发中的“坑”与解决方案 本文介绍了开发中遇到的几个关于移动端H5开发中的小问题,以及解决的方法。 一、iOS滑动不流畅问题 在iOS设备上,H5页面的滑动效果有时会出现不流畅的情况,特别是在页面高度超过一屏时。这通常是由于iOS的…...
TM1不藏私系列——#10. TM1快速运算的秘密武器-Feeder
与其他BI产品对比,TM1的快速运算能力一骑绝尘。 但是在多维度的数据组合下,TM1是依据什么进行运算的呢? 今天将和大家一同了解TM1快速运算的秘密武器-Feeder。 上期我们提到通过配置维度中的元素权重,可以在合并层级加总计算。除…...
【Python】【Conda 】Conda vs venv:Python开发者的虚拟环境选择指南
目录 引言一、概述1.1 Conda 虚拟环境1.2 Python venv 虚拟环境 二、安装与设置2.1 安装 Conda 虚拟环境2.2 安装 Python venv 虚拟环境 三、依赖管理3.1 Conda 依赖管理3.2 Python venv 依赖管理 四、适用场景五、性能与资源占用5.1 Conda 性能与资源占用5.2 Python venv 性能…...
【从0学英语】06.时态 - 一般过去时
一般过去时(Past Simple Tense)是表达过去发生的动作、状态或事实的核心时态。这一时态都扮演着不可或缺的角色,本篇文章将全面讲解一般过去时的定义、结构、用法以及常见的动词变化,通过例句和详细的解释帮你理解这一时态。 文章…...
获取cpu序列号-python实现
DataBall 助力快速掌握数据集的信息和使用方式,会员享有 百种数据集,持续增加中。 需要更多数据资源和技术解决方案,知识星球: “DataBall - X 数据球(free)” -------------------------------------------------------------…...
乐都区公司网站建设/app拉新推广平台渠道
30分钟SQL指南 本篇文章是 SQL 必知必会 的读书笔记,SQL必知必会的英文名叫做 Sams Teach Yourself in 10 Minutes。但是,我肯定是不能够在10分钟就能学会本书所有涉及到的sql,所以就起个名字叫30分钟学会SQL语句(其实半个小时也没…...
注销网站备案时间/发布软文是什么意思
VMware 中 Ubuntu的安装 步骤 1.文件>新建虚拟机 2.下一步 3.下一步 4.稍后安装操作系统 5.下一步 6.自己取创建的虚拟机名字和存放路径 7.根据自己电脑的配置选择配置 8.选择虚拟机的内存,一般为2G 9.默认下一步 10.下一步 11.下一步 12.选择创建新虚拟磁盘 1…...
厦门律师网站建设/搜索词分析
说明:PMI的很多考试题目中,可能有不止一个正确答案,要选择一个相对最正确的答案。从什么角度来判断相对性最正确的,从本三十六计中的几个角度:“相对首先”、“相对首要”、“相对全面”、“相对积极主动”、“相对相关…...
wordpress下滑显示导航/输入关键词自动生成文章
一、进阶算法 1、贪心算法 买卖股票的最佳时机柠檬水找零 2、动态规划 不同路径K站中转内最便宜的航班二、算法的设计思想 1、分而治之 2、动态规划 3、贪心 4、回溯 三、算法在 js 中的应用场景...
怎样做软件网站建设/精准营销推广
自从经朋友介绍PerfDog这款移动端测试神器后就一直在使用它测试大型游戏的流程度,前两天使用腾讯视频追剧分享到微信时发现发现的链接直接进入腾讯视频的小程序中,试了多个视频软件皆是如此,于是想要试试用PerfDog测试一下各家视频小程序实际…...
成都商城网站制作/seo发外链的网站
知乎首发,超全学习算法&数据结构干货:0基础入门算法面试提升指南!不废话,直接上干货!★本文将从以下3个方面告诉你:一、新手怎么快速入门算法基础——【0基础学习算法】二、如何拔高算法技能࿰…...