【深度学习】深刻理解ViT
ViT(Vision Transformer)是谷歌研究团队于2020年提出的一种新型图像识别模型,首次将Transformer架构成功应用于计算机视觉任务中。Transformer最初应用于自然语言处理(如BERT和GPT),而ViT展示了其在视觉任务中的潜力。ViT的核心思想是将图像划分为小的固定大小的块(patches),然后将这些块视为一个序列输入Transformer模型,类似于NLP中的词序列。这种方法不同于传统的卷积神经网络(CNN),它不依赖卷积操作,而是完全基于全局的自注意力机制。
论文原文:AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE
1. 方法
Transformer用encoder-decoder结构,通过学习语言的拆解组装对照表,实现了很好的机器翻译效果。BERT模型在此基础上通过encoder间的团结协作,在NLP领域实现了多种任务的处理。而视觉领域就是ViT模型了。与BERT相比,ViT的主要框架没有什么改变,都是采用多个Transformer encoder,依然使用多层多头的结构。其主要工作在于输入阶段,把图片进行向量化,转换成embeddings的词结构,从而实现了NLP中类似句子一样的效果,后续encoder的操作和原始Transformer中完全相同。
1.1. patch embedding
就如同ViT的题目所说的那样,将原始二维图像分成小块,称为patch,大小为16x16。每个patch也就相当于在机器翻译中句子中的一个词,然后经过全连接层,把patch压成一个向量。在向量的开头加入class token <cls>,目的是便于后期实现特征分类。
1.2. position embedding
将这个长x宽x通道数的矩阵表示进行展平,然后通过一个共享的线性层投射到Transformer模型里面的特征维度,比如1024。在投影后的固定长度的向量上加入tokens的位置信息,即加入一个可学习的向量,为后面的self-attention计算做准备。位置编码可以理解为一张表,表一共有N行,N的大小和输入序列长度相同,每一行代表一个向量,向量的维度和输入序列embedding的维度相同,其中位置编码的操作是sum,而不是concatenate。因为后面采用的是Transformer Encoder,每个Token不论在哪个位置都可以看到所有的Token。
1-D 位置编码:例如3x3共9个patch,patch编码为1到9
2-D 位置编码:patch 编码为11,12,13,21,22,23,31,32,33,即同时考虑X和Y轴的信息,每个轴的编码维度是D/2
实际实验结果表明,不管使用哪种位置编码方式,模型的精度都很接近,甚至不适用位置编码,模型的性能损失也没有特别大。原因可能是ViT是作用在image patch上的,而不是image pixel,对网络来说这些patch之间的相对位置信息很容易理解,所以使用什么方式的位置编码影像都不大。
1.3. MLP Head
Transformer之后的MLP Head其实就是一个全连接层,先把输入时添加的分类向量拿出来,输入到这个网络里,输出就是图像的分类类别了。
2. ViT训练
与BERT模型类似,ViT也根据encoder层数的不同训练连三种模型——ViT-Base、ViT-Large和ViT-Huge。patch size越小,序列越长,计算代价越大,一般来说效果也会越好。ViT的训练与BERT一样,也分为pre-training和fine-tuning两个过程。
论文中对学习到的位置编码进行了可视化,发现相近的图像块的位置编码较相似,且同行或列的位置编码也相近。随着encoder的增加,每个头关注的像素距离越来越远,关注全局信息。
参考资料:
ViT(Vision Transformer)解析 - 知乎https://zhuanlan.zhihu.com/p/445122996
【深度学习】详解 Vision Transformer (ViT)-CSDN博客https://blog.csdn.net/qq_39478403/article/details/118704747
【ViT模型】Transformer向视觉领域开疆拓土……_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV13B4y1x7jQ?spm_id_from=333.788.videopod.sections&vd_source=0dc0c2075537732f2b9a894b24578eed
VIT (Vision Transformer)深度讲解_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV15RDtYqE4r/?spm_id_from=333.337.search-card.all.click&vd_source=0dc0c2075537732f2b9a894b24578eed
相关文章:

【深度学习】深刻理解ViT
ViT(Vision Transformer)是谷歌研究团队于2020年提出的一种新型图像识别模型,首次将Transformer架构成功应用于计算机视觉任务中。Transformer最初应用于自然语言处理(如BERT和GPT),而ViT展示了其在视觉任务…...
解决vue2中更新列表数据,页面dom没有重新渲染的问题
在 Vue 2 中,直接修改数组的某个项可能不会触发视图的更新。这是因为 Vue 不能检测到数组的索引变化或对象属性的直接赋值。为了确保 Vue 能够正确地响应数据变化,你可以使用以下几种方法: 1. 使用 Vue.set() 使用 Vue.set() 方法可以确保 …...

vscode通过ssh连接远程服务器(实习心得)
一、连接ssh服务器 1.打开Visual Studio Code,进入拓展市场(CtrlShiftX),下载拓展Remote - SSH 2. 点击远程资源管理器选项卡,并选择远程(隧道/SSH)类别 3. 点击ssh配置:输入你的账号主机ip地址 4.在弹出的选择配置文件中…...

知识图谱9:知识图谱的展示
1、知识图谱的展示有很多工具 Neo4j Browser - - - - 浏览器版本 Neo4j Desktop - - - - 桌面版本 graphX - - - - 可以集成到Neo4j Desktop Neo4j 提供的 Neo4j Bloom 是用户友好的可视化工具,适合非技术用户直观地浏览图数据。Cypher 是其核心查询语言&#x…...

leetcode 面试经典 150 题:验证回文串
链接验证回文串题序号125类型字符串解题方法双指针法难度简单 题目 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后,短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s…...
【0363】Postgres内核 从 XLogReaderState readBuf 解析 XLOG Record( 8 )
上一篇: 【0362】Postgres内核 XLogReaderState readBuf 有完整 XLOG page header 信息 ? ( 7 ) 直接相关: 【0341】Postgres内核 读取单个 xlog page (2 - 2 ) 文章目录 1. readBuf 获取 page header 大小1.1 XLOG record 跨 page ?1.2 获取 XLOG Record 的 长度(xl…...
docker tdengine windows快速体验
#拉取镜像 docker pull tdengine/tdengine:2.6.0.34#容器运行 docker run -d --name td2.6 --restartalways -p 6030:6030 -p 6041:6041 -p 6043:6043 -p 6044-6049:6044-6049 -p 6044-6045:6044-6045/udp -p 6060:6060 tdengine/tdengine:2.6.0.34#容器数据持久化到本地 #/va…...

详解RabbitMQ在Ubuntu上的安装
目录 Ubuntu 环境安装 安装Erlang 查看Erlang版本 退出命令 编辑安装RabbitMQ 确认安装结果 安装RabbitMQ管理界面 启动服务 查看服务状态 通过IP:port访问 添加管理员用户 给用户添加权限 再次访问 Ubuntu 环境安装 安装Erlang RabbitMq需要…...

Python的3D可视化库【vedo】2-2 (plotter模块) 访问绘制器信息、操作渲染器
文章目录 4 Plotter类的方法4.1 访问Plotter信息4.1.1 实例信息4.1.2 演员对象列表 4.2 渲染器操作4.2.1 选择渲染器4.2.2 更新渲染场景 4.3 控制渲染效果4.3.1 渲染窗格的背景色4.3.2 深度剥离效果4.3.3 隐藏线框的线条4.3.4 改为平行投影模式4.3.5 添加阴影4.3.6 环境光遮蔽4…...
【vue2】文本自动省略组件,支持单行和多行省略,超出显示tooltip
代码见文末 vue3实现 最开始就用的vue3实现,如下 Vue3实现方式 vue2开发和使用文档 组件功能 TooltipText 是一个文字展示组件,具有以下功能: 文本显示:支持单行和多行文本显示。自动判断溢出:判断文本是否溢出…...
网络安全产品之认识防病毒软件
随着计算机技术的不断发展,防病毒软件已成为企业和个人计算机系统中不可或缺的一部分。防病毒软件是网络安全产品中的一种,主要用于检测、清除计算机病毒,以及预防病毒的传播。本文我们一起来认识一下防病毒软件。 一、什么是计算机病毒 计算…...

游戏引擎学习第42天
仓库: https://gitee.com/mrxiao_com/2d_game 简介 目前我们正在研究的内容是如何构建一个基本的游戏引擎。我们将深入了解游戏开发的每一个环节,从最基础的技术实现到高级的游戏编程。 角色移动代码 我们主要讨论的是角色的移动代码。我一直希望能够使用一些基…...
区块链智能合约( solidity) 安全编程
引言:本文由天玄链开源开发者提供,欢迎报名公益天玄链训练营 https://blockchain.163.com/trainingCamp 一、重入和竞态 重入和竞态在solidity 编程安全中会多次提及,历史上也造成了重大的损失。 1.1 问题分析 竞态的描述不严格…...

GUNS搭建
一、准备工作 源码下载: 链接: https://pan.baidu.com/s/1bJZzAzGJRt-NxtIQ82KlBw 提取码: criq 官方文档 二、导入代码 1、导入后端IDE 导入完成需要,需要修改yml文件中的数据库配置,改成自己的。 2、导入前端IDE 我是用npm安装的yarn npm…...
【ETCD】【源码阅读】stepWithWaitOption方法解析
在分布式系统中,ETCD 作为一个强一致性、高可用的 key-value 存储系统,广泛应用于服务发现、配置管理等场景。ETCD 在内部采用了 Raft 协议来保证集群的一致性,而日志预提案(log proposal)是 Raft 协议中至关重要的一部…...
redis 怎么样查看list
在 Redis 中,可以通过以下方法查看列表的内容或属性: 1. 查看列表中的所有元素 使用 LRANGE 命令: LRANGE key start endkey 是列表的名称。start 是起始索引,0 表示第一个元素。end 是结束索引,-1 表示最后一个元素…...
E: 无法获取 dpkg 前端锁 (/var/lib/dpkg/lock-frontend),是否有其他进程正占用它?
我们在使用Ubuntu系统时经常性使用sudo apt install命令安装所需要的软件库,偶尔会出现如下问题: E: 无法获得锁 /var/lib/dpkg/lock-frontend - open (11: 资源暂时不可用) E: 无法获取 dpkg 前端锁 (/var/lib/dpkg/lock-frontend),是否有其…...

创建型设计模式
一、设计模式介绍 1.设计模式是什么 设计模式是指在软件开发中,经过验证的,用于解决在特定环境下,重复出现的,特定问题的解决方案; 2.设计模式怎么来的? 满足设计原则后,慢慢迭代出来的。 3.设…...

仿iOS日历、飞书日历、Google日历的日模式
仿iOS日历、飞书日历、Google日历的日模式,24H内事件可自由上下拖动、自由拉伸。 以下是效果图: 具体实现比较简单,代码如下: import android.content.Context; import android.graphics.Canvas; import android.graphics.Color;…...

vuedraggable
官方文档:https://www.npmjs.com/package/vuedraggable 中文文档:http://www.itxst.com/vue-draggable/tutorial.html 案例下载地址: https://github.com/SortableJS/Vue.Draggable.git vuedraggablehttps://sortablejs.github.io/Vue.Dr…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

Qt的学习(一)
1.什么是Qt Qt特指用来进行桌面应用开发(电脑上写的程序)涉及到的一套技术Qt无法开发网页前端,也不能开发移动应用。 客户端开发的重要任务:编写和用户交互的界面。一般来说和用户交互的界面,有两种典型风格&…...