当前位置: 首页 > news >正文

【深度学习入门】深度学习介绍

1.1 深度学习介绍

学习目标

  • 目标
    • 知道深度学习与机器学习的区别
    • 了解神经网络的结构组成
    • 知道深度学习效果特点
  • 应用

区别

在这里插入图片描述

特征提取方面
  • 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识
  • 深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,通过将数据从一层传递到另一层来构建更复杂的模型。通过大量数据的训练自动得到模型,不需要人工设计特征提取环节

深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言领域(NLP)

深度学习应用场景

  • 图像识别
    • 物体识别
    • 场景识别
    • 车型识别
    • 人脸检测跟踪
    • 人脸关键点定位
    • 人脸身份认证
  • 自然语言处理技术
    • 机器翻译
    • 文本识别
    • 聊天对话
  • 语音技术
    • 语音识别

深度学习代表算法-神经网络

深度学习(Deep Learning)是机器学习的一个子领域,它利用多层神经网络模型从大量数据中自动学习特征和模式,以执行复杂的任务。这些任务包括但不限于图像识别、语音识别、自然语言处理、推荐系统等。以下是关于深度学习的详细介绍:

深度学习的基本概念
  • 神经网络:深度学习的核心是人工神经网络(Artificial Neural Network, ANN),它由许多节点(或称为神经元)组成,这些节点按层次排列。每个神经元接收输入信号,经过激活函数处理后产生输出信号。
  • 深度:所谓的“深度”指的是网络中有多个隐藏层。更多的层数意味着网络可以学习到更加抽象和复杂的特征表示。
  • 参数学习:通过调整网络中的权重(weights)和偏置(biases),使得网络能够最小化预测结果与真实标签之间的误差。
主要组件
  • 输入层:负责接收原始数据,如图像像素值、音频波形等。
  • 隐藏层:包含一个或多个中间层,用于提取数据特征。每一层都应用线性变换(加权求和)和非线性激活函数来处理信息。
  • 输出层:生成最终预测结果,对于分类问题通常是类别概率分布;对于回归问题则是连续值。
  • 损失函数(Loss Function):定义了预测值与实际值之间差异的度量标准,目的是指导模型如何改进其性能。
  • 优化算法:如随机梯度下降(SGD)、Adam 等,用来更新网络参数以降低损失函数值。
    正则化技术:为了防止过拟合,常用的技术包括 Dropout、L2 正则化等。
常见架构
  • 卷积神经网络(CNN):主要用于处理具有网格结构的数据,例如图像和视频。它们擅长捕捉空间局部相关性和平移不变性。
  • 循环神经网络(RNN)及其变体(如 LSTM 和 GRU):适用于序列数据,如时间序列分析、文本生成等。它们能够记住过去的信息,并影响当前的输出。
  • 自编码器(Autoencoder):用于无监督学习,旨在重建输入数据本身,常用于降维、特征学习和异常检测。
  • 生成对抗网络(GAN):由两个部分构成——生成器(Generator)和判别器(Discriminator),两者相互对抗训练,用于生成逼真的合成数据。
应用场景
  • 计算机视觉:如图像分类、目标检测、语义分割等。
  • 自然语言处理(NLP):如机器翻译、情感分析、问答系统等。
  • 语音识别:将语音转换为文本。
  • 推荐系统:根据用户行为提供个性化推荐。
  • 医疗诊断:辅助医生进行疾病诊断和治疗方案选择。
发展趋势

随着计算能力的提升(特别是 GPU 的广泛应用)、大数据集的可用性以及新算法的不断涌现,深度学习正在快速发展并取得突破性的成果。同时,研究者们也在探索更高效的架构设计、更好的泛化能力和更低的资源消耗,以便让深度学习技术能够在更多领域得到应用。

深度学习的工具和框架

为了简化开发流程并加速研究进展,出现了许多开源的深度学习库和平台:

  • TensorFlow:由谷歌开发,支持分布式计算,拥有庞大的社区支持。
  • PyTorch:来自Facebook AI Research,以其灵活性和动态图机制受到欢迎。
  • Keras:提供了高层API接口,易于上手,可运行于 TensorFlow 或 Theano 之上。
  • MXNet:亚马逊主推的框架,强调效率和扩展性。
  • Caffe:专注于卷积神经网络,在早期的图像处理任务中表现出色。

总之,随着硬件性能的提升以及大数据时代的到来,深度学习已经成为解决复杂问题的强大工具。无论是学术界还是工业界,都在积极探索如何更好地利用这项技术创造价值

神经网络

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的 计算模型。经典的神经网络结构包含三个层次的神经网络。分别输入层,输出层以及隐藏层。

在这里插入图片描述

其中每层的圆圈代表一个神经元,隐藏层和输出层的神经元有输入的数据计算后输出,输入层的神经元只是输入。

  • 神经网络的特点
    • 每个连接都有个权值,同一层神经元之间没有连接
    • 神经元当中会含有激活函数
    • 最后的输出结果对应的层也称之为全连接层

神经网络是深度学习的重要算法,用途在图像(如图像的分类、检测)和自然语言处理(如文本分类、聊天等)

那么为什么设计这样的结构呢?首先从一个最基础的结构说起,神经元。以前也称之为感知机。神经元就是要模拟人的神经元结构。

在这里插入图片描述

一个神经元通常具有多个树突,主要用来接受传入信息;而轴突只有一条,轴突尾端有许多轴突末梢可以给其他多个神经元传递信息。轴突末梢跟其他神经元的树突产生连接,从而传递信号。这个连接的位置在生物学上叫做“突触”。

神经网络理解案例

我们以票房预测的例子说明

在这里插入图片描述

输入影响票房的N个因素,这里举例四个因素,结果输出一个Y预测票房结果

为什么深度学习现在效果非常好

在这里插入图片描述
过去十多年,得益于数字社会的发展,积累了大量的数据。以前的一些算法到达了瓶颈期,它们无法适用于大量的数据。"大规模"一直推动深度学习的发展进步。不仅仅是数据量的大,算法模型规模越来越大等。

  • 数据
  • 计算
    • 训练网络需要GPU、TPU
  • 算法
    • 一些创新,如ReLU激活函数

相关文章:

【深度学习入门】深度学习介绍

1.1 深度学习介绍 学习目标 目标 知道深度学习与机器学习的区别了解神经网络的结构组成知道深度学习效果特点 应用 无 区别 特征提取方面 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识深度学习通常由多个层组成,它们通常将更简…...

数值分析—非线性方程的数值解

研究背景 形如 x − t a n x 0 x-tanx0 x−tanx0、 x l n x e − x 2 s i n x 0 xlnxe^{-x^2}sinx0 xlnxe−x2sinx0等称为非线性方程,自变量之间并非简单的线性关系,这种问题我们无法通过其结构求解,需要其他的逼近方式,本章…...

LDR6500应用:C转DP线材双向投屏开启全新体验

在当今这个科技日新月异、蓬勃发展的时代,高清视频传输以及显示技术已经深深融入到我们日常生活与工作的方方面面,其重要性不言而喻。不管是在商务场合的会议演示,还是教育领域的娱乐享受,以及充满激情的游戏竞技领域,…...

路径规划之启发式算法之十六:和声搜索算法(Harmony Search, HS)

和声搜索算法(Harmony Search, HS)是一种新兴的启发式全局搜索算法,是一种模拟音乐家即兴演奏过程的群体智能优化算法。这种算法由Zong Woo Geem等人在2001年提出,灵感来源于音乐家在寻找和声时的创造性思维过程。HS算法通过模拟音乐家演奏音乐时的选择过程来寻找问题的最优…...

Redis - 实战之 全局 ID 生成器 RedisIdWorker

概述 定义:一种分布式系统下用来生成全局唯一 ID 的工具 特点 唯一性,满足优惠券需要唯一的 ID 标识用于核销高可用,随时能够生成正确的 ID高性能,生成 ID 的速度很快递增性,生成的 ID 是逐渐变大的,有利于…...

matlab 连接远程服务器

通过matlab 控制远程服务器 查看 matlab 中 python 接口脚本 对于 matlab 2010b 兼容的 最高 Python版本是 3.10 安装 3.10 版本的Python,并安装 paramiko 库 pip install paramikomatlab 中设置 Python的环境 例如 pyversion(D:/Anaconda3/python.e…...

在服务器自主选择GPU使用

比如说,程序使用第 2 张显卡(从 0 开始计数)。它的作用是告诉系统和深度学习框架(如 PyTorch 或 TensorFlow)只可见某些 GPU。 export CUDA_VISIBLE_DEVICES1 然后再查看当前使用的显卡: echo $CUDA_VIS…...

【设计模式】享元模式(Flyweight Pattern)

享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享尽可能多的对象来有效支持大量细粒度的对象。这个模式主要用于减少内存使用和提高性能,特别是在需要创建大量相似对象的场景中。享元模式的核心思想是将对象的状态分为…...

题目 1688: 数据结构-字符串插入

第一种方式字符串 #include<iostream> #include<cstring> #include<algorithm> using namespace std; int main(){string s1,s2;int n;cin>>s1>>s2>>n;s1.insert(n-1,s2);cout<<s1<<endl;return 0; } 第二种方式字符数组 …...

28.攻防世界PHP2

进入场景 扫描目录 [04:12:32] 403 - 303B - /.ht_wsr.txt [04:12:32] 403 - 306B - /.htaccess.bak1 [04:12:32] 403 - 308B - /.htaccess.sample [04:12:…...

QML QT6 WebEngineView 、Echarts使用和数据交互

QML 中的 WebEngineView 是用于显示网页内容的组件,它基于 Qt WebEngine,支持现代网页渲染和与 JavaScript 的交互。它通常用来在 QML 应用中嵌入浏览器或加载在线资源。WebEngineView 可以展示 HTML、CSS、JavaScript 等网页内容,并提供多种属性和方法来控制其行为。 如下…...

SpringBoot 整合 Mail 轻松实现邮件自动推送

简单使用 1、pom 包配置 pom 包里面添加 spring-boot-starter-mail 包引用 <dependencies><dependency> <groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency> </de…...

MyBatis 核心知识与实践

一、MyBatis 概述 1. 框架简介 MyBatis 是一款支持自定义 SQL、存储过程以及高级映射的持久层框架。它避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集的操作&#xff0c;使开发人员能够更专注于 SQL 语句的编写和业务逻辑的处理。 2. 核心组件 SqlSessionFactoryB…...

机器学习期末速成

文章目录 一、机器学习分类二、逻辑回归三、决策树四、集成学习算法五、支持向量机六、聚类七、特征工程和指标 文章参考自B站机器学习期末速成课 本文仅作者个人复习使用 一、机器学习分类 聚类和分类的区别&#xff1a; 分类&#xff1a;一开始就知道有哪些类别 聚类&#…...

Linux中的线程

目录 线程的概念 进程与线程的关系 线程创建 线程终止 线程等待 线程分离 原生线程库 线程局部存储 自己实现线程封装 线程的优缺点 多线程共享与独占资源 线程互斥 互斥锁 自己实现锁的封装 加锁实现互斥的原理 死锁 线程同步 线程的概念 回顾进程相关概念 …...

AI大模型学习笔记|多目标算法梳理、举例

多目标算法学习内容推荐&#xff1a; 1.通俗易懂讲算法-多目标优化-NSGA-II(附代码讲解)_哔哩哔哩_bilibili 2.多目标优化 (python pyomo pareto 最优)_哔哩哔哩_bilibili 学习笔记&#xff1a; 通过网盘分享的文件&#xff1a;多目标算法学习笔记 链接: https://pan.baidu.com…...

蓝桥杯刷题——day3

蓝桥杯刷题——day3 题目一题干题目解析代码 题目二题干题目解析代码 题目一 题干 每张票据有唯一的 ID 号&#xff0c;全年所有票据的 ID 号是连续的&#xff0c;但 ID 的开始数码是随机选定的。因为工作人员疏忽&#xff0c;在录入 ID 号的时候发生了一处错误&#xff0c;造…...

企业级日志分析系统ELK之ELK概述

ELK 概述 ELK 介绍 什么是 ELK 早期IT架构中的系统和应用的日志分散在不同的主机和文件&#xff0c;如果应用出现问题&#xff0c;开发和运维人员想排 查原因&#xff0c;就要先找到相应的主机上的日志文件再进行查找和分析&#xff0c;所以非常不方便&#xff0c;而且还涉及…...

【开源项目】经典开源项目数字孪生体育馆—开源工程及源码

飞渡科技数字孪生体育馆管理平台&#xff0c;融合物联网IOT、BIM数据模型、三维GIS等技术&#xff0c;实现体育馆的全方位监控和实时全局掌握&#xff0c;同时&#xff0c;通过集成设备设施管理、人员管理等子系统&#xff0c;减少信息孤岛&#xff0c;让场馆“可视、可控、可管…...

C++多线程实战:掌握图像处理高级技巧

文章结尾有最新热度的文章,感兴趣的可以去看看。 本文是经过严格查阅相关权威文献和资料,形成的专业的可靠的内容。全文数据都有据可依,可回溯。特别申明:数据和资料已获得授权。本文内容,不涉及任何偏颇观点,用中立态度客观事实描述事情本身 导读 在当今的计算世界中,…...

解决MAC装win系统投屏失败问题(AMD显卡)

一、问题描述 电脑接上HDMI线后&#xff0c;电脑上能显示有外部显示器接入&#xff0c;但是外接显示器无投屏画面 二、已测试的方法 1 更改电脑分辨&#xff0c;结果无效 2 删除BootCamp&#xff0c;结果无效 3更新电脑系统&#xff0c;结果无效 4 在设备管理器中&#…...

网易游戏分享游戏场景中MongoDB运行和分析实践

在游戏行业中&#xff0c;数据库的稳定和性能直接影响了游戏质量和用户满意度。在竞争激烈的游戏市场中&#xff0c;一个优秀的数据库产品无疑能为游戏的开发和后期的运营奠定良好的基础。伴随着MongoDB在不同类型游戏场景中的应用越来越广泛&#xff0c;许多知名的游戏公司都在…...

Android14 AOSP 允许system分区和vendor分区应用进行AIDL通信

在Android14上&#xff0c;出于种种原因&#xff0c;system分区的应用无法和vendor分区的应用直接通过AIDL的方法进行通信&#xff0c;但是项目的某个功能又需要如此。 好在Binder底层其实是支持的&#xff0c;只是在上层进行了屏蔽。 修改 frameworks/native/libs/binder/Bp…...

R学习——因子

目录 1 定义因子&#xff08;factor函数&#xff09; 2因子的作用 一个数据集中的 只需要考虑可以用哪个数据来进行分类就可以了&#xff0c;可以用来分类就可以作为因子。 Cy1这个因子对应的水平level是4 6 8&#xff1a; 1 定义因子&#xff08;factor函数&#xff09; 要…...

pytest入门三:setup、teardown

https://zhuanlan.zhihu.com/p/623447031 function对应类外的函数&#xff0c;每个函数调用一次 import pytest def setup_module():print(开始 module)def teardown_module():print(结束 module)def setup_function():print(开始 function)def teardown_function():print(结…...

前端面试准备问题2

1.防抖和节流分别是什么&#xff0c;应用场景 防抖&#xff1a;在事件被触发后&#xff0c;只有在指定的延迟时间内没有再次触发&#xff0c;才执行事件处理函数。 在我的理解中&#xff0c;简单的说就是在一个指定的时间内&#xff0c;仅触发一次&#xff0c;如果有多次重复触…...

web前端sse封装

这是一个基于microsoft/fetch-event-source包封装的sse函数&#xff0c;包含开始、停止功能; 可传更多参数、使用非常简单。 使用前: 安装 microsoft/fetch-event-source 代码&#xff1a; // sse import { fetchEventSource } from microsoft/fetch-event-source import { …...

智能家居WTR096-16S录放音芯片方案,实现语音播报提示及录音留言功能

前言&#xff1a; 在当今社会的高速运转之下&#xff0c;夜幕低垂之时&#xff0c;许多辛勤工作的父母尚未归家。对于肩负家庭责任的他们而言&#xff0c;确保孩童按时用餐与居家安全成为心头大事。此时&#xff0c;家居留言录音提示功能应运而生&#xff0c;恰似家中的一位无形…...

【创建模式-蓝本模式(Prototype Pattern)】

目录 Overview应用场景代码演示JDK Prototype pattern 更优实践泛型克隆接口 https://doc.hutool.cn/pages/Cloneable/#%E6%B3%9B%E5%9E%8B%E5%85%8B%E9%9A%86%E7%B1%BB The prototype pattern is a creational design pattern in software development. It is used when the t…...

Spring Boot应用开发深度解析与实战案例

Spring Boot应用开发深度解析与实战案例 在当今快速发展的软件开发领域,Spring Boot凭借其“约定优于配置”的理念,极大地简化了Java应用的开发、配置和部署过程,成为了微服务架构下不可或缺的技术选型。本文将深入探讨Spring Boot的核心特性、最佳实践,并通过一个具体的…...

百度自助网站建设/花西子网络营销案例分析

ColdQuanta是一家美国量子初创公司&#xff0c;是冷原子量子技术的领导者。公司主要业务板块分为三个部分&#xff1a;量子计算、设备和机器&#xff0c;以及量子研究即服务&#xff08;Quantum Research-as-a-Service&#xff09;。 潜心研究15年后&#xff0c;这家2007年正式…...

重庆网站建设的价格低/怎么样建一个网站

原文链接&#xff1a;【Go最佳实践1】单元测试的另一种写法 引言 go中单元测试有3种类型&#xff1a; unit test&#xff1a;单元测试benchmark&#xff1a;基准测试example&#xff1a;例子 第一种、第二种比较常见&#xff0c;在各种书籍都有介绍&#xff0c;主要是 第3种…...

wordpress get_post/哪里做网络推广好

leet_461(求汉明距离): leet_code:链接问题描述&#xff1a;两个int型数的汉明距离就是它们二进制位中对应位不同值的个数。输入输出样例&#xff1a; Input: x 1, y 4 Output: 2Explanation: 1 (0 0 0 1) 4 (0 1 0 0) ↑ ↑ 代码说明&#xff1a;需要指出并记住的是&#x…...

上海购物网站建设/哪个软件可以自动排名

1&#xff09;实验平台&#xff1a;正点原子阿尔法Linux开发板 2&#xff09;平台购买地址&#xff1a;https://item.taobao.com/item.htm?id603672744434 2&#xff09;全套实验源码手册视频下载地址&#xff1a;http://www.openedv.com/thread-300792-1-1.html 3&#xff09…...

免费wordpress云服务器/百度账号客服24小时人工电话

本篇文章讲解了计算机的原码, 反码和补码. 并且进行了深入探求了为何要使用反码和补码, 以及更进一步的论证了为何可以用反码, 补码的加法计算原码的减法. 论证部分如有不对的地方请各位牛人帮忙指正! 希望本文对大家学习计算机基础有所帮助! 一. 机器数和真值 在学习原码, 反码…...

php网站开发示例/重庆seo网站收录优化

link函数&#xff08;给一个文件起多个文件名&#xff09;在UNIX系统中&#xff0c;一个文件可以同时拥有多个文件名。也就是我们想要复制一个文件时&#xff0c;并不必真正复制文件内容&#xff0c;只要另外建立一个文件名&#xff0c;然后将这个文件名链接到所要复制的文件就…...