《探索C++在3D重建中的算法与技术要点》
3D重建作为计算机视觉领域的重要技术,在诸多行业有着广泛应用,而C++以其高效性和对底层硬件的良好控制,成为实现3D重建算法的常用语言。以下是利用C++进行3D重建的一些常见算法和技术要点。
多视图立体视觉算法
多视图立体视觉是3D重建的基础算法之一。其原理是通过从不同角度拍摄的多幅图像来恢复物体的三维形状。例如,双目立体视觉利用两台相机从不同位置拍摄同一场景,根据视差原理计算出物体的深度信息。在C++实现中,首先要进行摄像机标定,确定相机的内参和外参,这是后续计算的基础。常用的标定方法有张正友标定法等,通过拍摄标定板的图像,利用C++中的数学库和OpenCV等图像处理库来求解相机参数。
立体匹配算法
立体匹配是多视图立体视觉中的关键步骤,用于在不同图像中找到对应像素点,从而计算视差图。半全局立体匹配算法是一种常用的方法,它通过在多个路径上累积匹配代价,减少噪声和误匹配,提高匹配精度。在C++实现时,需要先计算左右图像中每对像素的匹配代价,常用的代价计算方法有绝对差值、归一化互相关等。然后沿水平、垂直和对角线等多个路径累积匹配代价,最后选择累计代价最小的视差值作为最终视差,并对视差图进行滤波和平滑处理,去除噪声和伪匹配 。
点云处理与重建
点云是3D重建的重要数据表示形式,通过将图像中的像素点转换为三维空间中的点,可以构建出物体的点云模型。在C++中,可以使用PCL等点云处理库来实现点云的生成、滤波、配准等操作。例如,通过深度图可以将像素点的二维坐标和对应的深度值转换为三维点坐标,从而生成点云。然后可以使用滤波算法去除点云中的噪声点和离群点,提高点云质量。点云配准则是将不同视角下的点云进行对齐,常用的配准算法有ICP等,可以通过C++实现这些算法来得到更准确的点云模型。
网格重建与优化
点云数据虽然能够表示物体的三维形状,但不够直观和紧凑,因此需要将点云转换为网格模型。在C++中,可以使用Marching Cubes等算法来实现从点云到网格的重建。Marching Cubes算法通过在点云数据中构建等值面来生成网格模型。在得到初始网格模型后,还需要进行优化,以提高网格的质量和准确性。例如,可以使用拉普拉斯平滑等算法对网格进行平滑处理,去除尖锐的棱角和噪声,使网格更加自然和光滑。
纹理映射技术
纹理映射是为了使重建的3D模型更加逼真,将二维图像的纹理信息映射到三维模型的表面上。在C++中,可以通过计算纹理坐标和映射函数来实现纹理映射。首先需要确定三维模型表面上每个顶点的纹理坐标,然后根据纹理坐标将对应的纹理图像像素值映射到模型表面上。这需要对3D模型的几何结构和纹理图像有深入的理解,以及高效的C++代码来实现纹理坐标的计算和映射操作,以提高纹理映射的效率和质量,使重建的3D模型具有更加丰富的细节和真实感.
利用CUDA加速
3D重建算法通常计算量较大,为了提高重建速度,可以利用CUDA等并行计算技术来加速计算。CUDA允许使用GPU的强大并行计算能力来加速C++代码的执行。在3D重建中,可以将一些计算密集型的任务,如图像处理、点云生成、网格重建等,移植到GPU上进行并行计算。通过编写CUDA内核函数,将数据分配到GPU的多个线程中并行处理,从而大大提高计算效率。例如,在基于深度学习的3D重建方法中,可以使用CUDA加速神经网络的训练和推理过程,实现对复杂场景的快速重建.
相关文章:
《探索C++在3D重建中的算法与技术要点》
3D重建作为计算机视觉领域的重要技术,在诸多行业有着广泛应用,而C以其高效性和对底层硬件的良好控制,成为实现3D重建算法的常用语言。以下是利用C进行3D重建的一些常见算法和技术要点。 多视图立体视觉算法 多视图立体视觉是3D重建的基础算…...
【老白学 Java】数字格式化
数字格式化 文章来源:《Head First Java》修炼感悟。 很多时候需要对数字或日期进行格式化操作,来达到某些输出效果。Java 的 Formatter 类提供了很多扩展性功能用于字符串的格式化,只要调用 String 静态方法 format() ,传入参数…...
useCallback和forwardRef的联合使用
文章目录 一、useCallback二、forwardRef 总结了useCallback、forwardRef中的deps,以及操作子组建时会遇到数据流不同步的问题 一、useCallback useCallback可以缓存函数,这样避免组建更新导致的函数重建;useCallback在函数更新以后会在deps中…...
C# .NET CORE 开发问题汇总
1. error MSB4803: .NET Core 版本的 MSBuild 不支持“ResolveComReference”。请使用 .NET Framework 版本的 MSBuild。 引用了一个COM组件, 使用donet 命令时,提示不支持, 可以先将项目设置为x86以构建, 将COM引用添加到核心项目中,构建它,在obj\x86\…...
【C语言】拆数字组成最大数
相信你是最棒哒!!! 文章目录 题目描述 正确代码 法一注释版 简洁版 法二注释版 简洁版 题目描述 任意输入一个自然数,输出该自然数的各位数字组成的最大数。例如,输入 1593 ,则输出为 9531 。 输入描述 …...
【Git系列】根据提交打印邮箱
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...
Nginx在处理客户端请求的并发性发面是否依赖Linux的多线程原理
Nginx在处理客户端请求的并发性发面是否依赖Linux的多线程原理 Nginx 在处理客户端请求的并发性方面,并不依赖于 Linux 的多线程原理。 Nginx 的并发处理主要基于 事件驱动模型 和 异步非阻塞 I/O,而不是传统的多线程或多进程模型。 Nginx 的并发处理模…...
Python生成对抗神经网络GAN预测股票及LSTMs、ARIMA对比分析ETF金融时间序列可视化
全文链接:https://tecdat.cn/?p38528 本文聚焦于利用生成对抗网络(GANs)进行金融时间序列的概率预测。介绍了一种新颖的基于经济学驱动的生成器损失函数,使 GANs 更适用于分类任务并置于监督学习环境中,能给出价格回…...
深入了解C++中const的用法
文章目录 一、C中的const如何理解?二、C中的const与C语言中的const有何区别?三、const与指针、引用的结合使用 一、C中的const如何理解? 在C中,const是一个关键字,用来表示常量性,意在告诉编译器某些变量或…...
【Linux金典面试题(上)】41道Linux金典面试问题+详细解答,包含基本操作、系统维护、网络配置、脚本编程等问题。
大家好,我是摇光~,用大白话讲解所有你难懂的知识点 之前写了一篇关于 python 的面试题,感觉大家都很需要,所以打算出一个面试专栏。 【数据分析岗】Python金典面试题 这个专栏主要针对面试大数据岗位、数据分析岗位、数据运维等…...
利用Python实现多元回归预测汽车价格
引言: AI技术的热门使得大家对机器学习有了更多的关注,作为与AI技术息息相关的一门课程,从头了解基础的机器学习算法就显得十分有必要,如:梯度下降,线性回归等。 正文: 本文将讲解线性回归中多元回回归的案例 机器学习大致可以分为监督学习,非监督学习、半监督学习还…...
抓包软件fiddler和wireshark使用手册
fiddler官方文档 Fiddler 抓包教程1 Fiddler 抓包教程2 wireshark抓包学习 2添加链接描述 ip 过滤 ip.src_host ip.dst_host ip.addr mac 过滤 eth.src eth.dst eth.addr 端口过滤 tcp.port tcp.srcport tcp.dstport 协议类型过滤 arp dhcp 规则组合 and or...
初识三大 Observer
文章目录 ResizeObserver、MutationObserver和IntersectionObserver用MutationObserver实现图片懒加载MutationObserver 兼容性问题IntersectionObserver 应用MutationObserver和IntersectionObserver的区别IntersectionObserver 实例示例一:图片懒加载示例二&#…...
Eclipse MAT(Memory Analyzer Tool) 使用手册
参考:JAVA内存泄露使用MAT(Memory Analyzer Tool)快速定位代码 Eclipse MAT 1.15.0提示JDK版本最低需要使用17版本的,如果不想安装可以下载ZIP包,或者使用较低版本的MAT。 为了避免下载的17版本JDK和本地环境干扰,可以直接在MAT配…...
TongWe7.0-东方通TongWeb控制台无法访问 排查
**问题描述:**无法访问TongWeb的控制台 逐项排查: 1、控制台访问地址是否正确:http://IP:9060/console #IP是服务器的实际IP地址 2、确认TongWeb进程是否存在,执行命令:ps -ef|grep tongweb 3、确认TongWeb服务启动…...
Ariba Procurement: Administration_Master data
采购主数据集成Procurement Master Data Integration 注意:并非所有元素都是必需的,数据元素的名称可能根据ERP的不同,有所不同。 Types of Master Data Accounting 在SAP Ariba中的各种会计元素字段中,填充有效值选择列表。建…...
爬虫学习案例4
爬取猪八戒网站数据:2024-12-12 使用xpath解析元素,安装依赖库 pip install lxml使用selenium步骤我的上篇博客有提到,这里就不重复了 selenium使用博客导航 # 安装pip install lxml,使用xpath from lxml import etree import time from s…...
Angular模块化应用构建详解
文章目录 前言一、理解Angular模块(NgModule)二、创建功能模块三、懒加载模块以提高性能四、共享模块五、库模块六、最佳实践与注意事项七、案例研究:重构电子商务平台结语 前言 Angular是一款由Google支持的、用于构建动态Web应用程序的前端…...
51c大模型~合集89
我自己的原文哦~ https://blog.51cto.com/whaosoft/12815167 #OpenAI很会营销 而号称超强AI营销的灵感岛实测成效如何? OpenAI 是懂营销的,连续 12 天发布,每天一个新花样,如今刚过一半,热度依旧不减。 毫无疑问&…...
【蓝桥杯备战】Day 1
1.基础题目 LCR 018.验证回文串 给定一个字符串 s ,验证 s 是否是 回文串 ,只考虑字母和数字字符,可以忽略字母的大小写。 本题中,将空字符串定义为有效的 回文串 。 示例 1: 输入: s "A man, a plan, a canal: Panama…...
FedAdam算法:供给方信用,数据质量;更新一致性
FedAdam算法:供给方信用,数据质量;更新一致性 FedAdam算法概述 FedAdam是一种联邦学习(Federated Learning)算法。联邦学习是一种机器学习技术,它允许在多个设备或数据中心(称为客户端)上训练模型,而无需将数据集中到一个中央服务器,从而保护数据隐私。FedAdam主要用于…...
内存卡格式化后的数据恢复全攻略
一、内存卡格式化简述 内存卡,作为现代电子设备中不可或缺的存储媒介,广泛应用于手机、相机、行车记录仪等各类设备中。然而,在使用过程中,我们可能会遇到内存卡需要格式化的情况。格式化是一种将内存卡上的所有数据和文件系统清…...
介绍交叉熵损失(Cross-Entropy Loss)以及交叉熵在对比学习中的应用:中英双语
中文版 本文解释 交叉熵损失(Cross-Entropy Loss),并结合对比学习的应用说明它如何工作,以及如何让正样本对更近、负样本对更远。 什么是交叉熵损失? 交叉熵损失是机器学习中常用的一种损失函数,主要用于…...
RabbitMQ的几个概念
注:这篇文章会随时添加新的内容,就是将RabbtiMQ中的概念添加到这里。助力大家的学习 自动ACK和手动ACK的区别 自动ACK和手动ACK是消息队列中两种不同的消息确认机制,它们在消息处理的可靠性和灵活性方面存在显著差异。 自动ACK(…...
Ollama部署大模型并安装WebUi
Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型 安装 Linux curl -fsSL https://ollama.com/install.sh | sh我是ubuntu系统安装,其他系统可以看项目的开源地址有写 GitHub - ollama/ollama: Get up and running with Llama 3, Mist…...
Debedium如何忽略Oracle的purge命令
报错 截至目前3.0版本,Debezium的Oracle Connector并不支持purge table这个指令。 所以,在使用Debezium解析Oracle变更的时候,如果在源端执行了类似 purge table "$BIN… 的语句,就会导致Debezium罢工,日志里显…...
PlantUML 语言
PlantUML 是一种开源工具,用于通过简单的文本描述生成 UML 图。它支持多种 UML 图类型,如类图、序列图、用例图、活动图、组件图、状态图等。PlantUML 语言非常简洁,采用类似编程语言的语法,允许用户使用文本定义模型,…...
linux的 .so和.ko文件分别是什么?主要区别是什么?
前言: .so和.ko文件的主要区别在于它们的应用层次和功能不同。 应用层次 .so文件:这是用户层的动态链接库(Shared Object),主要用于用户态的程序中。 它用于动态链接,多个程序可以共享同一个库文件&…...
XX服务器上的npm不知道咋突然坏了
收到同事的V,说是:182上的npm不知道咋突然坏了,查到这里了,不敢动了。 咱一定要抓重点:突然坏了。这里的突然肯定不是瞬间(大概率是上次可用,这次不可用,中间间隔了多长时间&#x…...
数据结构(优先级队列 :Priority Queue)
前言: 在计算机科学中,队列是一种非常常见的数据结构,它遵循先进先出(FIFO)的原则,也就是说,先进入队列的元素会先被处理。然而,在许多实际应用中,我们不仅仅需要按顺序…...
山东建设和城乡建设厅注册中心网站/搜索量排名
说明 被测试代码文件sample4.h、sample4.cc测试代码文件sample4_unittest.cc官网上如是描述sample4: Sample #4 is another basic example of using Google Test. sample4的代码文件可以直接添加到前面sample使用的工程中进行编译。 理解被测试代码 被测试代码是一个…...
免费做优化的网站建设/网页生成
自己动手写个spring IOC容器 http://blog.csdn.net/u010837612/article/details/50686573 XPath 语法 http://www.runoob.com/xpath/xpath-syntax.html spring ioc原理(看完后大家可以自己写一个spring) http://blog.csdn.net/it_man/article/detai…...
网站做编辑赚钱/合肥seo推广公司
1491 黄金系统题目来源: CodeForces基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题收藏关注q5√12,在黄金系统下面a0a1...an等于 ∑ni0ai∗qn−i,其中 ai是0或者1。 现在给出两个黄金系统下…...
自适应网站可以做伪静态页面吗/seo及网络推广招聘
25日 高通在北京召开2018高通中国技术与合作峰会,宣布5G领航计划。联想、OPPO、vivo、小米、中兴、闻泰科技在峰会上表示将开启合作,共同加速商用顶级5G终端在2019年的推出。 媒体对此评价为“中国手机半壁江山为高通站台”。这样一幕“武林大会”式样的…...
wordpress会员微信支付宝/谷歌三件套
1.3按位AND和按位ORTime Limit: 1000 ms Memory Limit: 65536 KiBSubmit StatisticProblem Description已知长度为n的两个位串a和b,求它们的按位AND和按位OR。Input多组测试数据,每组测试数据第1行输入位串长度n(0 < n < 64),第2行输入…...
四川住房建设和城乡建设厅新网站/日本樱花免m38vcom费vps
jQuery Mobile 入门4 四. jQuery Mobile 事件 1. 事件介绍 在jQuery Mobile你可以使用任何标准的 jQuery 事件 。 Jquery Mobile 事件包括:触摸事件、虚拟鼠标事件、设备方向事件、滚屏事件、页面加载事件、页面显示/隐藏事件、页面初始化事件、动画事件等。这些…...