当前位置: 首页 > news >正文

行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测)

行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测)

目录

行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测)

1. 前言

2. 人体检测数据集说明

3. 基于YOLOv5的人体检测模型训练

4.人体检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

(2) 将ONNX模型转换为TNN模型

(3) Android端上部署模型

(4) 一些异常错误解决方法

5. 人体检测效果

6.项目源码下载


1. 前言

这是项目《行人检测(人体检测)》系列之《Android实现人体检测(含源码,可实时人体检测)》;本篇主要分享将Python训练后的YOLOv5的人体检测模型移植到Android平台。我们将开发一个简易的、可实时运行的人体检测Android Demo。

考虑到原始YOLOv5的模型计算量比较大,鄙人在YOLOv5s基础上,开发了一个非常轻量级的的人体检测模型yolov5s05_320。从效果来看,Android人体检测模型的检测效果还是可以的,高精度版本YOLOv5s平均精度平均值mAP_0.5:0.95=0.84354,而轻量化版本yolov5s05_416平均精度平均值mAP_0.5:0.95=0.76103左右。APP在普通Android手机上可以达到实时的检测识别效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。

先展示一下Android Demo效果

【Android APP体验】https://download.csdn.net/download/guyuealian/87441942

【项目源码下载】 

【尊重原创,转载请注明出处】https://blog.csdn.net/guyuealian/article/details/128954615


 更多项目《行人检测(人体检测)》系列文章请参考:

  1. 行人检测(人体检测)1:人体检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/128821763
  2. 行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/128954588
  3. 行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954615
  4. 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954638


2. 人体检测数据集说明

目前收集VOC,COCO和MPII数据集,总数据量约10W左右,可用于人体(行人)检测模型算法开发。这三个数据集都标注了人体检测框,但没有人脸框,考虑到很多项目业务需求,需要同时检测人脸和人体框;故已经将这三个数据都标注了person和face两个标签,以便深度学习目标检测模型训练。

关于人体检测数据集使用说明和下载,详见另一篇博客说明:《行人检测(人体检测)1:人体检测数据集(含下载链接)》 行人检测(人体检测)1:人体检测数据集(含下载链接)_AI吃大瓜的博客-CSDN博客


3. 基于YOLOv5的人体检测模型训练

官方YOLOv5给出了YOLOv5l,YOLOv5m,YOLOv5s等模型。考虑到手机端CPU/GPU性能比较弱鸡,直接部署yolov5s运行速度十分慢。所以本人在yolov5s基础上进行模型轻量化处理,即将yolov5s的模型的channels通道数全部都减少一半,并且模型输入由原来的640×640降低到416×416或者320×320,该轻量化的模型我称之为yolov5s05。轻量化后的模型yolov5s05比yolov5s计算量减少了16倍,参数量减少了7倍。

下面是yolov5s05和yolov5s的参数量和计算量对比:

模型input-sizeparams(M)GFLOPs
yolov5s640×6407.216.5
yolov5s05416×4161.71.8
yolov5s05320×3201.71.1

yolov5s05和yolov5s训练过程完全一直,仅仅是配置文件不一样而已;碍于篇幅,本篇博客不在赘述,详细训练过程请参考: 《行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码)》https://blog.csdn.net/guyuealian/article/details/128954588


4.人体检测模型Android部署

(1) 将Pytorch模型转换ONNX模型

训练好yolov5s05或者yolov5s模型后,你需要将模型转换为ONNX模型,并使用onnx-simplifier简化网络结构

# 转换yolov5s05模型
python export.py --weights "runs/yolov5s05_320/weights/best.pt" --img-size 320 320# 转换yolov5s模型
python export.py --weights "runs/yolov5s_640/weights/best.pt" --img-size 640 640

GitHub: https://github.com/daquexian/onnx-simplifier
Install:  pip3 install onnx-simplifier 

(2) 将ONNX模型转换为TNN模型

目前CNN模型有多种部署方式,可以采用TNN,MNN,NCNN,以及TensorRT等部署工具,鄙人采用TNN进行Android端上部署:

TNN转换工具:

  • (1)将ONNX模型转换为TNN模型,请参考TNN官方说明:TNN/onnx2tnn.md at master · Tencent/TNN · GitHub
  • (2)一键转换,懒人必备:一键转换 Caffe, ONNX, TensorFlow 到 NCNN, MNN, Tengine   (可能存在版本问题,这个工具转换的TNN模型可能不兼容,建议还是自己build源码进行转换,2022年9约25日测试可用)

​​

(3) Android端上部署模型

项目实现了Android版本的人体检测Demo,部署框架采用TNN,支持多线程CPU和GPU加速推理,在普通手机上可以实时处理。Android源码核心算法YOLOv5部分均采用C++实现,上层通过JNI接口调用

package com.cv.tnn.model;import android.graphics.Bitmap;public class Detector {static {System.loadLibrary("tnn_wrapper");}/**** 初始化模型* @param model: TNN *.tnnmodel文件文件名(含后缀名)* @param root:模型文件的根目录,放在assets文件夹下* @param model_type:模型类型* @param num_thread:开启线程数* @param useGPU:关键点的置信度,小于值的坐标会置-1*/public static native void init(String model, String root, int model_type, int num_thread, boolean useGPU);/**** 检测* @param bitmap 图像(bitmap),ARGB_8888格式* @param score_thresh:置信度阈值* @param iou_thresh:  IOU阈值* @return*/public static native FrameInfo[] detect(Bitmap bitmap, float score_thresh, float iou_thresh);
}

如果你想在这个Android Demo部署你自己训练的YOLOv5模型,你可将训练好的Pytorch模型转换ONNX ,再转换成TNN模型,然后把TNN模型代替你模型即可。

(4) 一些异常错误解决方法

  • TNN推理时出现:Permute param got wrong size

官方YOLOv5:  GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite 

如果你是直接使用官方YOLOv5代码转换TNN模型,部署TNN时会出现这个错误Permute param got wrong size,这是因为TNN最多支持4个维度计算,而YOLOv5在输出时采用了5个维度。你需要修改model/yolo.py文件 

​​

 export.py文件设置model.model[-1].export = True:

.....# Exportsif 'torchscript' in include:export_torchscript(model, img, file, optimize)if 'onnx' in include:model.model[-1].export = True  # TNN不支持5个维度,修改输出格式export_onnx(model, img, file, opset, train, dynamic, simplify=simplify)if 'coreml' in include:export_coreml(model, img, file)# Finishprint(f'\nExport complete ({time.time() - t:.2f}s)'f"\nResults saved to {colorstr('bold', file.parent.resolve())}"f'\nVisualize with https://netron.app').....
  • TNN推理时效果很差,检测框一团麻

​​

 这个问题,大部分是模型参数设置错误,需要根据自己的模型,修改C++推理代码YOLOv5Param模型参数。


struct YOLOv5Param {ModelType model_type;                  // 模型类型,MODEL_TYPE_TNN,MODEL_TYPE_NCNN等int input_width;                       // 模型输入宽度,单位:像素int input_height;                      // 模型输入高度,单位:像素bool use_rgb;                          // 是否使用RGB作为模型输入(PS:接口固定输入BGR,use_rgb=ture时,预处理将BGR转换为RGB)bool padding;int num_landmarks;                     // 关键点个数NetNodes InputNodes;                   // 输入节点名称NetNodes OutputNodes;                  // 输出节点名称vector<YOLOAnchor> anchors;vector<string> class_names;            // 类别集合
};

input_width和input_height是模型的输入大小;vector<YOLOAnchor> anchors需要对应上,注意Python版本的yolov5s的原始anchor是

anchors:- [ 10,13, 16,30, 33,23 ]  # P3/8- [ 30,61, 62,45, 59,119 ]  # P4/16- [ 116,90, 156,198, 373,326 ]  # P5/32

而yolov5s05由于input size由原来640变成320,anchor也需要做对应调整:

anchors:- [ 5, 6, 8, 15, 16, 12 ]  # P3/8- [ 15, 30, 31, 22, 30, 60 ]  # P4/16- [ 58, 45, 78, 99, 186, 163 ]  # P5/32

因此C++版本的yolov5s和yolov5s05的模型参数YOLOv5Param如下设置

//YOLOv5s模型参数
static YOLOv5Param YOLOv5s_640 = {MODEL_TYPE_TNN,640,640,true,true,0,{{{"images", nullptr}}}, //InputNodes{{{"boxes", nullptr},   //OutputNodes{"scores", nullptr}}},{{"434", 32, {{116, 90}, {156, 198}, {373, 326}}},{"415", 16, {{30, 61}, {62, 45}, {59, 119}}},{"output", 8, {{10, 13}, {16, 30}, {33, 23}}},},CLASS_NAME
};//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_416 = {MODEL_TYPE_TNN,416,416,true,true,0,{{{"images", nullptr}}}, //InputNodes{{{"boxes", nullptr},   //OutputNodes{"scores", nullptr}}},{{"434", 32,{{75, 58}, {101, 129}, {242, 212}}},{"415", 16, {{20, 40}, {40, 29}, {38, 77}}},{"output", 8, {{6, 8}, {10, 20}, {21, 15}}}, //},CLASS_NAME
};
//YOLOv5s05模型参数
static YOLOv5Param YOLOv5s05_ANCHOR_320 = {MODEL_TYPE_TNN,320,320,true,true,0,{{{"images", nullptr}}}, //InputNodes{{{"boxes", nullptr},   //OutputNodes{"scores", nullptr}}},{{"434", 32, {{58, 45}, {78, 99}, {186, 163}}},{"415", 16, {{15, 30}, {31, 22}, {30, 60}}},{"output", 8, {{5, 6}, {8, 15}, {16, 12}}}, //},CLASS_NAME
};
  • 运行APP闪退:dlopen failed: library "libomp.so" not found

参考解决方法:解决dlopen failed: library “libomp.so“ not found_PKing666666的博客-CSDN博客_dlopen failed


5. 人体检测效果

 【Android APP体验】https://download.csdn.net/download/guyuealian/87441942

APP在普通Android手机上可以达到实时的人体检测效果,CPU(4线程)约30ms左右,GPU约25ms左右 ,基本满足业务的性能需求。


6.项目源码下载

 【Android APP体验】https://download.csdn.net/download/guyuealian/87441942

 【人体检测Android源码下载】 

整套Android项目源码内容包含:

  1. 提供快速版yolov5s05人体检测模型,在普通手机可实时检测识别,CPU(4线程)约30ms左右,GPU约25ms左右
  2. 提供高精度版本yolov5s人体检测模型,CPU(4线程)约250ms左右,GPU约100ms左右
  3. Demo支持图片,视频,摄像头测试

更多项目《行人检测(人体检测)》系列文章请参考:

  1. 行人检测(人体检测)1:人体检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/128821763
  2. 行人检测(人体检测)2:YOLOv5实现人体检测(含人体检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/128954588
  3. 行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954615
  4. 行人检测(人体检测)4:C++实现人体检测(含源码,可实时人体检测):https://blog.csdn.net/guyuealian/article/details/128954638

相关文章:

行人检测(人体检测)3:Android实现人体检测(含源码,可实时人体检测)

行人检测(人体检测)3&#xff1a;Android实现人体检测(含源码&#xff0c;可实时人体检测) 目录 行人检测(人体检测)3&#xff1a;Android实现人体检测(含源码&#xff0c;可实时人体检测) 1. 前言 2. 人体检测数据集说明 3. 基于YOLOv5的人体检测模型训练 4.人体检测模型…...

【图像分类】基于PyTorch搭建LSTM实现MNIST手写数字体识别(单向LSTM,附完整代码和数据集)

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 提起LSTM大家第一反应是在NLP的数据集上比较常见,不过在图片分类中,它同样也可以使用。我们以比较熟悉的 mnist…...

Kotlin 1.8.0 现已发布,有那些新特性?

文章目录**如何安装 Kotlin 1.8.0****如果您遇到任何问题****更多文章和视频**结语Kotlin 1.8.0 版本现已发布&#xff0c;以下是其部分最大亮点&#xff1a; JVM 的新实验性功能&#xff1a;递归复制或删除目录内容提升了 kotlin-reflect 性能新的-Xdebug编译器选项&#xff…...

likeshop单商户SaaS商城系统—无限多开,搭建多个商城

likeshop单商户SaaS商城系统&#xff1a;适用于多开&#xff08;SaaS&#xff09;、B2C、单商户、自营商城场景&#xff0c;完美契合私域流量变现闭环交易使用&#xff0c;系统拥有丰富的营销玩法&#xff0c;强大的分销能力&#xff0c;支持DIY多模板&#xff0c;前后端分离。…...

Bean(Spring)的执行流程和生命周期

Bean&#xff08;Spring&#xff09;的执行流程具体的流程就和我们创建Spring基本相似。启动 Spring 容器 -> 实例化 Bean&#xff08;分配内存空间&#xff0c;从无到有&#xff09; -> Bean 注册到 Spring 中&#xff08;存操作&#xff09; -> 将 Bean 装配到需要的…...

工作记录------PostMan自测文件导入、导出功能

工作记录------PostMan自测文件导入、导出功能 测试文件导出 背景&#xff1a;写了一个文件下载功能&#xff0c;是数据写到excel中&#xff0c;下载&#xff0c;使用PostMan点击send后&#xff0c;返回报文是乱码。 解决办法&#xff1a; 点击send下面的 send and Downlo…...

上海亚商投顾:沪指震荡上行 大消费板块全线走强

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。市场情绪三大指数今日震荡反弹&#xff0c;沪指全天低开高走&#xff0c;深成指、创业板指均涨超1%。工程机械板块集体大涨&a…...

linux中的图形化UDP调试工具

sokit freeware version: 1.3.1 (GPLv3) website: https://github.com/sinpolib/sokit/ 这是一个TCP / UDP数据包收发和传输工具 linux汉化 默认是英文版本的&#xff0c;如果想使用中文&#xff0c;把软件目录下的sokit.lan_rename重命令为sokit.lan再次打开软件就发现已经…...

前端react面试题指南

概述下 React 中的事件处理逻辑 抹平浏览器差异&#xff0c;实现更好的跨平台。避免垃圾回收&#xff0c;React 引入事件池&#xff0c;在事件池中获取或释放事件对象&#xff0c;避免频繁地去创建和销毁。方便事件统一管理和事务机制。 为了解决跨浏览器兼容性问题&#xff0…...

深入浅出原核基因表达调控(乳糖操纵子、色氨酸操纵子)

原核基因表达调控 前言 自然界里&#xff0c;能量时有时无&#xff0c;各种生命为了让自己能够活下去&#xff0c;需要适应环境&#xff0c;在不同的环境合成不同的蛋白质。 原核生物体内有很多细胞&#xff0c;细胞里面有很多蛋白质&#xff0c;但是这些蛋白质在这些细胞里…...

10分钟理解Mysql索引

一、索引介绍 索引是什么 官方介绍索引是帮助MySQL高效获取数据的数据结构。更通俗的说&#xff0c;数据库索引好比是一本书前面的目录&#xff0c;能加快数据库的查询速度。 一般来说索引本身也很大&#xff0c;不可能全部存储在内存中&#xff0c;因此索引往往是存储在磁盘…...

nVisual综合布线可视化管理系统解决方案

​一、综合布线管理系统的必要性 如今企事业单位办公人员变化很快&#xff0c;如果还是采用传统方式通过工程竣工图或者网络拓扑图来进行网络维护工作会非常麻烦&#xff0c;并且对管理人员的要求也会很高&#xff0c;管理人员需要清楚的知道工作区的信息点与配线架点之间的对…...

34岁测试工程师被辞退,难道测试岗位真的只是青春饭吗?

一&#xff1a;前言&#xff1a;人生的十字路口静坐反思 入软件测试这一行至今已经10年多&#xff0c;承蒙领导们的照顾与重用&#xff0c;同事的支持与信任&#xff0c;我的职业发展算是相对较好&#xff0c;从入行到各类测试技术岗位&#xff0c;再到测试总监&#xff0c;再…...

Java中常见的空指针异常

参考链接&#xff1a; java中什么是空指针异常以及为什么会产生空指针异常天上的云川的博客-CSDN博客什么是java空指针 java中容易产生空指针异常&#xff1a;NullPointerException的场景火龙映天的博客-CSDN博客java怎么制造空指针异常 java空指针异常是什么、怎么发生、如何…...

d亚当替换工厂模式

对象工厂替代方案 一般,需要无需用模块构造器触发d运行时的挑剔循环检测的方法来注册工厂.很多时候,混合模块构造器正是想要方法,但它有全局全开或全闭的循环检测算法. 要全局关闭它,请在Main文件中,添加以下代码行: extern(C) __gshared string[] rt_options ["oncycl…...

Real-time Scene Text Detection with Differentiable Binarization

Abstract 近年来&#xff0c;基于分割的方法在文本检测场景中非常流行&#xff0c;因为分割结果可以更准确地描述曲线文本等各种形状的场景文本。然而&#xff0c;二值化的后处理对于分割检测是必不可少的&#xff0c;它将分割方法产生的概率图转换为文本框/区域。本文提出了一…...

国外客户只想跟工厂合作?可以这样破解

1.客户是愿意和外贸公司合作还是更愿意和工厂合作&#xff1f;一个外贸公司的朋友说:“我去工厂接待过七八次外国人&#xff0c;基本上都是英国、德国、日本、加拿大、美国的。”贸易公司根本不避讳自己是贸易公司&#xff0c;外国人也不在乎。他们更关心的是贸易公司能否妥善安…...

c++重中之重:“换个龟壳继续套娃“:运算符重载等的学习

文章目录 前言一.运算符重载二.const成员三.取地址重载总结前言 上一期我们讲到类的6个默认构造函数中的拷贝构造函数&#xff0c;这一期我们继续往下讲&#xff0c;当然难点肯定是运算符重载了。 一、运算符重载 运算符重载是c为了增强代码的可读性引入了运算符重载&#xf…...

RabbitMQ简单使用

这篇文章通过一个最简单的例子&#xff0c;让初学者能了解RabbitMQ如何完成生产消息和消息的。 所有的程序员在学习一门新技术的时候&#xff0c;都是从 Hello World 进入到Colorful World的&#xff0c;本节也将按照惯例&#xff0c;从HelloWorld开始&#xff0c;演示RabbitMQ…...

Lambda表达式

&#x1f44c; 棒棒有言&#xff1a;也许我一直照着别人的方向飞&#xff0c;可是这次&#xff0c;我想要用我的方式飞翔一次&#xff01;人生&#xff0c;既要淡&#xff0c;又要有味。凡事不必太在意&#xff0c;一切随缘&#xff0c;缘深多聚聚&#xff0c;缘浅随它去。凡事…...

JSON数据格式【学习记录】

JSON介绍 JSON&#xff08;JavaScript Objet Notation&#xff09;是一种轻量级的数据交换格式。它使得人们很容易的进行阅读和编写。同时也方便了机器进行解析和生成。它采用一种键:值对的文本格式来存储和表示数据&#xff0c;在系统交换数据过程中常常被使用&#xff0c;是…...

LeetCode——1234. 替换子串得到平衡字符串

一、题目 有一个只含有 ‘Q’, ‘W’, ‘E’, ‘R’ 四种字符&#xff0c;且长度为 n 的字符串。 假如在该字符串中&#xff0c;这四个字符都恰好出现 n/4 次&#xff0c;那么它就是一个「平衡字符串」。 给你一个这样的字符串 s&#xff0c;请通过「替换一个子串」的方式&a…...

Web自动化测试——selenium篇(二)

文章目录一、浏览器相关操作二、键盘操作三、鼠标操作四、弹窗操作五、下拉框选择六、文件上传七、错误截图一、浏览器相关操作 浏览器窗口大小设置 driver.manage().window().maximize();//窗口最大化 driver.manage().window().minimize();//窗口最小化 driver.manage().wi…...

RK3399平台开发系列讲解(文件系统篇)虚拟文件系统的数据结构

🚀返回专栏总目录 文章目录 一、超级块二、挂载描述符三、文件系统类型四、索引节点五、目录项沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇将介绍虚拟文件系统的数据结构。 一、超级块 文件系统的第一块是超级块,用来描述文件系统的总体信息。当我们把文件系…...

企业财务管理升级,智慧税务和数据可视化打造新标准

一、引言在发展社会主义市场经济的过程中&#xff0c;税收承担着组织财政收入、调控经济、调节社会分配的职能。中国每年财政收入的90%以上来自税收&#xff0c;其地位和作用越来越重要&#xff0c;可称之为国家经济的“晴雨表”&#xff0c;有效进行税务管理、充分挖掘税务大数…...

JFET(结型场效应管)

JFET的结构示意图 参考&#xff1a;https://blog.csdn.net/weixin_45882303/article/details/106008695 下图是实际结构图&#xff0c; 下面是原理图和符号表示&#xff08;参考连接中的图片&#xff09; 分析 VGS 对电压id的控制&#xff08;固定VDS&#xff09; 当让D和…...

oceanbase部署--使用OBD部署obagent和promethous_grafana软件

obagent OBAgent 通常部署在 OBServer 节点上。OBAgent支持推、拉两种数据采集模式&#xff0c;可以满足不同的应用场景。 OBAgent默认支持的插件包括主机数据采集、OceanBase 数据库指标的采集、监控数据标签处理和 Prometheus 协议的 HTTP 服务。 1&#xff09;编辑 OBAgent …...

浏览器广告拦截插件| 浏览器搜索广告横飞怎么办

文章目录浏览器广告拦截插件| 浏览器搜索广告横飞怎么办一、效果二、安装浏览器广告拦截插件| 浏览器搜索广告横飞怎么办 浏览器广告横飞怎么办&#xff1f;今天教你一招解决&#xff01;很多小伙伴说自己用的浏览器总是有广告。 今天咱们就针对这个问题分享一个浏览器插件&a…...

Redis优化内存篇

【内存消耗】 场景&#xff1a;业务ID->图片ID&#xff08;KV:partnerId->objectId&#xff09;。 刚开始&#xff0c;我们保存了1亿张图片&#xff0c;大约用了6.4GB的内存。 随着图片数据量的不断增加&#xff0c;Redis变慢了。 新的认知&#xff1a;String类型并不是适…...

Vue原理解析

文章目录1. VUE的响应式原理1.1 ViewModel1.2 双向绑定的基本原理1.3 什么是响应性1.4 Vue 中的响应性是如何工作的2. Vue 渲染机制2.1 虚拟 DOM2.2 渲染管线2.3 带编译时信息的虚拟 DOM2.3.1 静态提升2.3.2 修补标记 Flags2.3.3 树结构打平2.3.4 对 SSR 激活的影响1. VUE的响应…...

网站建设后备案多少钱/seo优化必备技巧

最近ChatGPT引发了全球范围内的AI热&#xff0c;随之而来的是与AI算法紧密相关的AI计算与AI芯片又一次火爆了起来。但事实上&#xff0c;大语言模型能够驱动的算力增长是有限的。根据相关数据&#xff0c;未来有70%-80%的AI计算任务将发生在机器视觉与多模态领域。因此&#xf…...

可以免费做推广的网站/今日热点新闻事件摘抄

点击蓝字进入亚德诺半导体&#xff0c;然后右上角“设为标星”吧~在信号链中运用采样保持放大器(THA)&#xff0c;可以从根本上扩展带宽&#xff0c;使其远远超出 ADC 采样带宽&#xff0c;满足苛刻高带宽的应用的需求。本文将证明&#xff0c;针对 RF 市场开发的最新转换器前增…...

代做网站app/网络推广专员岗位职责

​寻找瓶颈1>安插自己的测试代码插入下述“显式”计时代码&#xff0c;对程序进行评测&#xff1a;long start System.currentTimeMillis();//要计时的运算代码放在这儿long time System.currentTimeMillis() - start;可用一个“静态最终布尔值”(Static final boolean)打…...

遵义原创网站/百度sem代运营

主要技术&#xff1a;Java、SpringBoot、SpringMVC、Mybatis、shiro、 MYSQL、Jquery layui等技术 主要功能&#xff1a; 1) 用户登录、注册功能 2) 管理端功能&#xff1a;用户管理、考勤管理、流程管理、公告管理 3&#xff09;管理端功能&#xff1a;考勤管理、流程管理、…...

加大政府网站建设/微信营销的方法有哪些

故障存储&#xff1a;WD2500AAJS-75M0A0 故障现象&#xff1a;加电后敲盘&#xff0c;电机停转 故障分析&#xff1a; 和用户沟通中得知此盘为DELL机器原装盘&#xff0c;正常开机使用过程中受外力机箱从桌子上摔下来&#xff0c;用户已经尝试把硬盘挂载到USB接口上进行读取的操…...

有没有电商设计的网站参考/企业邮箱如何申请注册

我正在将我的应用程序从log4j迁移到log4j2 API.迁移时,我发现使用自定义patternlayouts,patternparsers和patternconverters.我不知道如何使用log4j2插件实现这些更改.谁能帮助我如何将这个自定义布局TestPatternLayout转换为log4j2.非常感谢.PFB有关如何使用log4j实现自定义模…...