当前位置: 首页 > news >正文

YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务


在这里插入图片描述


摘要

作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别 × 空间 × 通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自注意力机制的构建。然而,直接在所有维度上学习注意力函数过于困难,且计算成本过高。因此,作者提出通过分别在特征的每个特定维度上部署注意力机制,即在级别、空间和通道维度上来解决这一问题。

在这里插入图片描述


# 理论介绍

DynamicHead模块是针对目标检测任务提出的一种新的头部(head)结构,它的设计目的是通过引入多种注意力机制,提升模型的检测能力。核心思想是使得检测头部可以动态地根据输入特征进行自适应调整,从而提高模型在不同尺度、空间、任务等方面的表现。DynamicHead模块的关键组成部分包括:

  • Scale-Aware Attention Module(尺度感知注意力模块):该模块根据特征的尺度进行调整,使得不同尺度的特征能在合适的尺度下进行融合和处理。它通过为不同尺度的特征赋予权重来优化尺度差异的影响。
  • Spatial-Aware Attention Module(空间感知注意力模块):该模块针对空间位置进行优化。通过对特征图中的重要区域进行加权,使得网络能更关注目标物体的前景区域,避免特征图的冗余部分对模型性能造成影响。
  • Task-Aware Module(任务感知模块):这个模块根据具体任务(如分类、定位等)调整头部的输出。它能根据任务需求优化目标的分类或回归结果,提高模型的准确度和鲁棒性。

下图摘自论文
在这里插入图片描述

理论详解可以参考链接:论文地址
代码可在这个链接找到:代码地址


小目标理论

在YOLOv11 中,输入图像的尺寸为 640x640x3,经过 8 倍、16 倍和 32 倍下采样后分别得到 80x80、40x40 以及 20x20 大小的特征图,网络最终在这三个不同尺度的特征图上进行目标检测。在这三个尺度的特征图中,局部感受野最小的是 8 倍下采样特征图,即如果将该特征图映射到原输入图像,则每个网格对应原图 8x8 的区域。对于分辨率较小的目标而言,8 倍下采样得到的特征图感受野仍然偏大,容易丢失某些小目标的位置和细节信息。为了改善目标漏检现状,对 YOLOv8 的 Head 结构进行优化,在原有的三尺度检测头的基础之上,新增一个针对微小目标检测的检测头 ,YOLOv11 原有 P3、P4 和 P5 这 3 个输出层&#x

相关文章:

YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务

摘要 作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别 空间 通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自…...

一个基于Python+Appium的手机自动化项目~~

本项目通过PythonAppium实现了抖音手机店铺的自动化询价,可以直接输出excel,并带有详细的LOG输出。 1.excel输出效果: 2. LOG效果: 具体文件内容见GitCode: 项目首页 - douyingoods:一个基于Pythonappium的手机自动化项目,实现了…...

【后端开发】字节跳动青训营之性能分析工具pprof

性能分析工具pprof 一、测试程序介绍二、pprof工具安装与使用2.1 pprof工具安装2.2 pprof工具使用 资料链接: 项目代码链接实验指南pprof使用指南 一、测试程序介绍 package mainimport ("log""net/http"_ "net/http/pprof" // 自…...

Linux:线程池和单例模式

一、普通线程池 1.1 线程池概念 线程池:一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价&…...

使用iis服务器模拟本地资源服务器unityaddressables热更新出错记录

editor中设置了using exculexing 模拟远程加载addressable可以实现资源热更新,build后的软件却没有成功。 iis服务器中mime中需要设置bundle的文件扩展名,时editor成功,build后失败 原因没有设置hash的扩展名,设置后editor和buil…...

TikTok广告投放优化策略:提升ROI的核心技巧

在短许多品牌和商家纷纷投入广告营销,争夺这片潜力巨大的市场。然而,在激烈的竞争环境中,如何精准有效地投放广告,优化广告效果,实现更高的投资回报率(ROI)成为了广告主关注的核心。 一. 精准受…...

Hash表

哈希表存储结构(开放寻址法,拉链法)字符串哈希方式(添加、查找h(x)) 常见从0~10^9映射到0~10^5就要对10^5取mod(取模一般要质数最好)但是可能会有冲突 1.拉链法:O(1),每…...

题解:P10972 I-Country

题目传送门 思路 因为占据的连通块的左端点先递减、后递增,右端点先递增、后递减,所以设 f i , j , l , r , x ( 0 / 1 ) , y ( 0 / 1 ) f_{i,j,l,r,x(0/1),y(0/1)} fi,j,l,r,x(0/1),y(0/1)​ 为前 i i i 行中,选择 j j j 个方格&#x…...

linux常用加固方式

目录 一.系统加固 二.ssh加固 三.换个隐蔽的端口 四.防火墙配置 五.用户权限管理 六.暴力破解防护 七.病毒防护 八.磁盘加密 九.双因素认证2FA 十.日志监控 十一.精简服务 一.系统加固 第一步:打好系统补丁 sudo apt update && sudo apt upgra…...

笔灵ai写作技术浅析(二):自然语言处理

一、词法分析(Lexical Analysis) 1.1 概述 词法分析是NLP的第一步,主要任务是将连续的文本分割成有意义的单元(词或词组),并对这些单元进行标注,如词性标注(POS tagging)。词法分析的质量直接影响后续的句法分析和语义理解。 1.2 技术细节 1.分词(Tokenization)…...

PyCharm介绍

PyCharm的官网是https://www.jetbrains.com/pycharm/。 以下是在PyCharm官网下载和安装软件的步骤: 下载步骤 打开浏览器,访问PyCharm的官网https://www.jetbrains.com/pycharm/。在官网首页,点击“Download”按钮进入下载页面。选择适合自…...

深度解析:基于Vue 3与Element Plus的学校管理系统技术实现

一、项目架构分析 1.1 技术栈全景 核心框架:Vue 3 TypeScript UI组件库:Element Plus(含图标动态注册) 状态管理:Pinia(用户状态持久化) 路由方案:Vue Router(动态路…...

Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类

前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能…...

苍穹外卖 项目记录 day09 历史订单

文章目录 查询历史订单查询订单详情取消订单再来一单 查询历史订单 分页查询历史订单可以根据订单状态查询展示订单数据时,需要展示的数据包括:下单时间、订单状态、订单金额、订单明细(商品名称、图片) #OrderController/*** 历…...

记录 | 基于Docker Desktop的MaxKB安装

目录 前言一、MaxKBStep 1Step2 二、运行MaxKB更新时间 前言 参考文章:如何利用智谱全模态免费模型,生成大家都喜欢的图、文、视并茂的文章! MaxKB的Github下载地址 参考视频:【2025最新MaxKB教程】10分钟学会一键部署本地私人专属…...

WordPress web-directory-free插件存在本地文件包含导致任意文件读取漏洞(CVE-2024-3673)

免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…...

LLM:BERT or BART 之BERT

文章目录 前言一、BERT1. Decoder-only2. Encoder-only3. Use of Bidirectional Context4. Masked Language Model (MLM)5. Next Sentence Prediction (NSP)6. Fine-tune1、情感分析2、句对分析3、命名实体识别(NER) 7. BERT总结 总结 前言 NLP选手对这…...

EtherCAT主站IGH-- 18 -- IGH之fsm_mbox_gateway.h/c文件解析

EtherCAT主站IGH-- 18 -- IGH之fsm_mbox_gateway.h/c文件解析 0 预览一 该文件功能`fsm_mbox_gateway.c` 文件功能函数预览二 函数功能介绍`fsm_mbox_gateway.c` 中主要函数的作用1. `ec_fsm_mbg_init`2. `ec_fsm_mbg_clear`3. `ec_fsm_mbg_transfer`4. `ec_fsm_mbg_exec`5. `e…...

深入探讨防抖函数中的 this 上下文

深入剖析防抖函数中的 this 上下文 最近我在研究防抖函数实现的时候,发现一个耗费脑子的问题,出现了令我困惑的问题。接下来,我将通过代码示例,深入探究这些现象背后的原理。 示例代码 function debounce(fn, delay) {let time…...

【AI论文】魔鬼在细节:关于在训练专用混合专家模型时实现负载均衡损失

摘要:本文重新审视了在训练混合专家(Mixture-of-Experts, MoEs)模型时负载均衡损失(Load-Balancing Loss, LBL)的实现。具体来说,MoEs的LBL定义为N_E乘以从1到N_E的所有专家i的频率f_i与门控得分平均值p_i的…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色&#xf…...

什么是EULA和DPA

文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

C++使用 new 来创建动态数组

问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

基于 TAPD 进行项目管理

起因 自己写了个小工具,仓库用的Github。之前在用markdown进行需求管理,现在随着功能的增加,感觉有点难以管理了,所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD,需要提供一个企业名新建一个项目&#…...

Kafka入门-生产者

生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...