当前位置: 首页 > news >正文

Jetson Orin Nano Super之 onnxruntime 编译安装

Jetson Orin Nano Super之 onnxruntime 编译安装

  • 1. 源由
  • 2. 步骤
    • 步骤一:安装3.26 cmake
    • 步骤二:下载代码
    • 步骤三:编译代码
    • 步骤四:找到安装包
    • 步骤五:安装whl包
  • 3. 注意
  • 4. 参考资料

1. 源由

  • Build onnxruntime 1.19.2 fail due to API HardwareCompatibilityLevel
  • Build onnxruntime v1.19.2 for Jetpack 5.1.4 L4T 35.6 Faild
  • How to translate xx/x scripts of TensorRT installation?

onnxruntime 受到TensorRT版本的限制,在8.x TensorRT阶段支持的并不太好,尤其由于接口的变化,兼容性并不理想。

从 Jetson Orin Nano Super 开始,也就是Jetpack 6.2之后,TensorRT据反馈说是能够升级,从前面的软件版本和API设计/维护看,非常吃力!!!

2. 步骤

步骤一:安装3.26 cmake

$ sudo apt remove --purge cmake
$ wget https://github.com/Kitware/CMake/releases/download/v3.26.4/cmake-3.26.4-linux-aarch64.sh
$ sudo mkdir -p /opt/cmake
$ sudo sh cmake-3.26.4-linux-aarch64.sh --prefix=/opt/cmake --skip-license
$ echo 'export PATH=/opt/cmake/bin:$PATH' >> ~/.bashrc
$ source ~/.bashrc

确认版本安装成功:

$ cmake --version

步骤二:下载代码

$ git clone https://github.com/SnapDragonfly/onnxruntime.git
$ cd onnxruntime
$ git checkout nvidia_v1.19.2

步骤三:编译代码

$ export PATH="/usr/local/cuda/bin:${PATH}"
$ export CUDACXX="/usr/local/cuda/bin/nvcc"$ ./build.sh --config Release --update --build --parallel --build_wheel \--use_tensorrt --cuda_home /usr/local/cuda --cudnn_home /usr/lib/aarch64-linux-gnu \--tensorrt_home /usr/lib/aarch64-linux-gnu

步骤四:找到安装包

或者进入到该目录下进行安装。

$ ls build/Linux/Release/dist/
build/Linux/Release/dist/onnxruntime_gpu-1.19.2-cp310-cp310-linux_aarch64.whl

步骤五:安装whl包

$ cd build/Linux/Release/dist/
$ python3 -m pip install --no-cache onnxruntime_gpu-1.19.2-cp310-cp310-linux_aarch64.whl

3. 注意

编译过程需要注意onnxruntime和TensorRT的API兼容性问题。

4. 参考资料

【1】Jetson Orin Nano Super之pytorch + torchvision安装
【2】Jetson Orin Nano Super之jetson-fpv开源代码下载
【3】Ardupilot开源无人机之Geek SDK进展2024-2025

相关文章:

Jetson Orin Nano Super之 onnxruntime 编译安装

Jetson Orin Nano Super之 onnxruntime 编译安装 1. 源由2. 步骤步骤一:安装3.26 cmake步骤二:下载代码步骤三:编译代码步骤四:找到安装包步骤五:安装whl包 3. 注意4. 参考资料 1. 源由 Build onnxruntime 1.19.2 fai…...

开发环境搭建-3:配置 nodejs 开发环境 (fnm+ node + pnpm)

在 WSL 环境中配置:WSL2 (2.3.26.0) Oracle Linux 8.7 官方镜像 node 官网:https://nodejs.org/zh-cn/download 点击【下载】,选择想要的 node 版本、操作系统、node 版本管理器、npm包管理器 根据下面代码提示依次执行对应代码即可 基本概…...

[SWPUCTF 2022 新生赛]js_sign

题目 查看页面源代码 <!DOCTYPE html> <html> <head><meta charset"utf-8"><style>body {background-color: rgb(255, 255, 255);}</style> </head> <body><input id"flag" /><button>Check…...

农业信息化的基本框架

农业信息化的主要研究内容 基于作物模型的相关研究 作物生长模拟模型以及模型评价、模型的应用作物模型应用&#xff0c;包括&#xff1a;作物生态系统过程、生产管理措施、区域作物产量评估与气候变化对产量影响预测、基于作物模型的决策支持系统 数据挖掘、知识工程及应用、管…...

OpenAI的真正对手?DeepSeek-R1如何用强化学习重构LLM能力边界——DeepSeek-R1论文精读

2025年1月20日&#xff0c;DeepSeek-R1 发布&#xff0c;并同步开源模型权重。截至目前&#xff0c;DeepSeek 发布的 iOS 应用甚至超越了 ChatGPT 的官方应用&#xff0c;直接登顶 AppStore。 DeepSeek-R1 一经发布&#xff0c;各种资讯已经铺天盖地&#xff0c;那就让我们一起…...

Vue 3 中的父子组件传值:详细示例与解析

在 Vue 3 中&#xff0c;父子组件之间的数据传递是一个常见的需求。父组件可以通过 props 将数据传递给子组件&#xff0c;而子组件可以通过 defineProps 接收这些数据。本文将详细介绍父子组件传值的使用方法&#xff0c;并通过优化后的代码示例演示如何实现。 1. 父子组件传值…...

回顾2024,展望2025

项目 LMD performance phase2 今年修修补补&#xff0c;设计和做了很多item&#xff0c;有时候自己都数不清做了什么大大小小的item&#xff0c;但是for LMD performance phase2的go-live确实是最大也是最难的了&#xff0c;无论什么系统&#xff0c;只要用的人多了&#xff…...

【Python实现机器遗忘算法】复现2021年顶会 AAAI算法Amnesiac Unlearning

【Python实现机器遗忘算法】复现2021年顶会 AAAI算法Amnesiac Unlearning 1 算法原理 论文&#xff1a;Graves, L., Nagisetty, V., & Ganesh, V. (2021). Amnesiac machine learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 115…...

Vue 3 30天精进之旅:Day 03 - Vue实例

引言 在前两天的学习中&#xff0c;我们成功搭建了Vue.js的开发环境&#xff0c;并创建了我们的第一个Vue项目。今天&#xff0c;我们将深入了解Vue的核心概念之一——Vue实例。通过学习Vue实例&#xff0c;你将理解Vue的基础架构&#xff0c;掌握数据绑定、模板语法和指令的使…...

【ArcGIS微课1000例】0141:提取多波段影像中的单个波段

文章目录 一、波段提取函数二、加载单波段导出问题描述:如下图所示,img格式的时序NDVI数据有24个波段。现在需要提取某一个波段,该怎样操作? 一、波段提取函数 首先加载多波段数据。点击【窗口】→【影像分析】。 选择需要处理的多波段影像,点击下方的【添加函数】。 在多…...

【第九天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-六种常见的图论算法(持续更新)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、Python数据结构与算法的详细介绍1.Python中的常用的图论算法2. 图论算法3.详细的图论算法1&#xff09;深度优先搜索&#xff08;DFS&#xff09;2&#xf…...

落地 轮廓匹配

个人理解为将一幅不规则的图形&#xff0c;通过最轮廓发现&#xff0c;最大轮廓匹配来确定图像的位置&#xff0c;再通过pt将不规则的图像放在规定的矩形里面&#xff0c;在通过透视变换将不规则的图形放进规则的图像中。 1. findHomography 函数 • Mat h findHomography(s…...

【漫话机器学习系列】064.梯度下降小口诀(Gradient Descent rule of thume)

梯度下降小口诀 为了帮助记忆梯度下降的核心原理和关键注意事项&#xff0c;可以用以下简单口诀来总结&#xff1a; 1. 基本原理 损失递减&#xff0c;梯度为引&#xff1a;目标是让损失函数减少&#xff0c;依靠梯度指引方向。负梯度&#xff0c;反向最短&#xff1a;沿着负…...

JAVA(SpringBoot)集成Kafka实现消息发送和接收。

SpringBoot集成Kafka实现消息发送和接收。 一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者 君子之学贵一&#xff0c;一则明&#xff0c;明则有功。 一、Kafka 简介 Kafka 是由 Apache 软件基金会开发的一个开源流处理平台&#xff0c;最初由 Link…...

AI刷题-蛋糕工厂产能规划、优质章节的连续选择

挑两个简单的写写 目录 一、蛋糕工厂产能规划 问题描述 输入格式 输出格式 解题思路&#xff1a; 问题理解 数据结构选择 算法步骤 关键点 最终代码&#xff1a; 运行结果&#xff1a;​编辑 二、优质章节的连续选择 问题描述 输入格式 输出格式 解题思路&a…...

在线可编辑Excel

1. Handsontable 特点&#xff1a; 提供了类似 Excel 的表格编辑体验&#xff0c;包括单元格样式、公式计算、数据验证等功能。 支持多种插件&#xff0c;如筛选、排序、合并单元格等。 轻量级且易于集成到现有项目中。 具备强大的自定义能力&#xff0c;可以调整外观和行为…...

什么是词嵌入?Word2Vec、GloVe 与 FastText 的区别

自然语言处理(NLP)领域的核心问题之一,是如何将人类的语言转换成计算机可以理解的数值形式,而词嵌入(Word Embedding)正是为了解决这个问题的重要技术。本文将详细讲解词嵌入的概念及其经典模型(Word2Vec、GloVe 和 FastText)的原理与区别。 1. 什么是词嵌入(Word Em…...

WPS数据分析000010

基于数据透视表的内容 一、排序 手动调动 二、筛选 三、值显示方式 四、值汇总依据 五、布局和选项 不显示分类汇总 合并居中带标签的单元格 空单元格显示 六、显示报表筛选页...

Qt中QVariant的使用

1.使用QVariant实现不同类型数据的相加 方法&#xff1a;通过type函数返回数值的类型&#xff0c;然后通过setValue来构造一个QVariant类型的返回值。 函数&#xff1a; QVariant mainPage::dataPlus(QVariant a, QVariant b) {QVariant ret;if ((a.type() QVariant::Int) &a…...

Avalonia UI MVVM DataTemplate里绑定Command

Avalonia 模板里面绑定ViewModel跟WPF写法有些不同。需要单独绑定Command. WPF里面可以直接按照下面的方法绑定DataContext. <Button Content"Button" Command"{Binding DataContext.ClickCommand, RelativeSource{RelativeSource AncestorType{x:Type User…...

动态规划DP 数字三角型模型 最低通行费用(题目详解+C++代码完整实现)

最低通行费用 原题链接 AcWing 1018. 最低同行费用 题目描述 一个商人穿过一个 NN的正方形的网格&#xff0c;去参加一个非常重要的商务活动。 他要从网格的左上角进&#xff0c;右下角出。每穿越中间 1个小方格&#xff0c;都要花费 1个单位时间。商人必须在 (2N−1)个单位…...

deepseek R1的确不错,特别是深度思考模式

deepseek R1的确不错&#xff0c;特别是深度思考模式&#xff0c;每次都能自我反省改进。比如我让 它写文案&#xff1a; 【赛博朋克版程序员新春密码——2025我们来破局】 亲爱的代码骑士们&#xff1a; 当CtrlS的肌肉记忆遇上抢票插件&#xff0c;当Spring Boot的…...

Linux 常用命令 - sort 【对文件内容进行排序】

简介 sort 命令源于英文单词 “sort”&#xff0c;表示排序。其主要功能是对文本文件中的行进行排序。它可以根据字母、数字、特定字段等不同的标准进行排序。sort 通过逐行读取文件&#xff08;没有指定文件或指定文件为 - 时读取标准输入&#xff09;内容&#xff0c;并按照…...

MyBatis最佳实践:提升数据库交互效率的秘密武器

第一章&#xff1a;框架的概述&#xff1a; MyBatis 框架的概述&#xff1a; MyBatis 是一个优秀的基于 Java 的持久框架&#xff0c;内部对 JDBC 做了封装&#xff0c;使开发者只需要关注 SQL 语句&#xff0c;而不关注 JDBC 的代码&#xff0c;使开发变得更加的简单MyBatis 通…...

选择困难?直接生成pynput快捷键字符串

from pynput import keyboard# 文档&#xff1a;https://pynput.readthedocs.io/en/latest/keyboard.html#monitoring-the-keyboard # 博客(pynput相关源码)&#xff1a;https://blog.csdn.net/qq_39124701/article/details/145230331 # 虚拟键码(十六进制)&#xff1a;https:/…...

DeepSeek-R1:强化学习驱动的推理模型

1月20日晚&#xff0c;DeepSeek正式发布了全新的推理模型DeepSeek-R1&#xff0c;引起了人工智能领域的广泛关注。该模型在数学、代码生成等高复杂度任务上表现出色&#xff0c;性能对标OpenAI的o1正式版。同时&#xff0c;DeepSeek宣布将DeepSeek-R1以及相关技术报告全面开源。…...

国内优秀的FPGA设计公司主要分布在哪些城市?

近年来&#xff0c;国内FPGA行业发展迅速&#xff0c;随着5G通信、人工智能、大数据等新兴技术的崛起&#xff0c;FPGA设计企业的需求也迎来了爆发式增长。很多技术人才在求职时都会考虑城市的行业分布和发展潜力。因此&#xff0c;国内优秀的FPGA设计公司主要分布在哪些城市&a…...

3.日常英语笔记

screening discrepancies 筛选差异 The team found some screening discrepancies in the data. 团队在数据筛选中发现了些差异。 Don’t tug at it ,or it will fall over and crush you. tug 拉&#xff0c;拽&#xff0c;拖 He tugged the door open with all his might…...

基于RIP的MGRE实验

实验拓扑 实验要求 按照图示配置IP地址配置静态路由协议&#xff0c;搞通公网配置MGRE VPNNHRP的配置配置RIP路由协议来传递两端私网路由测试全网通 实验配置 1、配置IP地址 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24 [R1]int LoopBack 0 [R1-LoopBack0]i…...

【开源免费】基于Vue和SpringBoot的美食推荐商城(附论文)

本文项目编号 T 166 &#xff0c;文末自助获取源码 \color{red}{T166&#xff0c;文末自助获取源码} T166&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...