当前位置: 首页 > news >正文

【深度之眼cs231n第七期】笔记(三十一)

目录

  • 强化学习
    • 什么是强化学习?
    • 马尔可夫决策过程(MDP)
    • Q-learning
    • 策略梯度
    • SOTA深度强化学习

还剩一点小尾巴,还是把它写完吧。(距离我写下前面那行字又过了好几个月了【咸鱼本鱼】)(汗颜,好久之前写了一半就忘了,后面的就直接看图吧)

cs231n的强化学习公式较多,我是看了李宏毅的强化学习才理解的。

强化学习

什么是强化学习?

总览:强化学习里有三个重要的概念:环境agent奖励

它们的关系如下:

  • 环境给予agent一个状态St;
  • 在该状态下,agent采取行动At;
  • 对于行动At,环境给出的奖励是Rt;
  • 并且环境给予agent下一状态St+1,循环往复。

强化学习的目标是:学习如何行动能使奖励达到最大,我们能控制的只有行动,奖励和状态都是环境给予的。
在这里插入图片描述
举个具体的例子:
Atari游戏的状态是当前游戏界面;
agent可采取的行动有:上、下、左、右;
奖励:采取一步行动后,获得或减少的分数;
目标:以最高分完成游戏。
在这里插入图片描述

马尔可夫决策过程(MDP)

上面都是用文字描述的,现在用数学语言来描述一下强化学习S。

事实上,一个马尔可夫决策过程就是强化学习问题的数学表达。马尔可夫决策过程满足马尔可夫性。
马尔可夫性:当前状态完全刻画了世界状态,也就是说,下一状态完全依赖于当前状态。

马尔可夫决策过程由一组对象定义(S,A,R,P,γ)

  • S是所有可能状态的集合
  • A是所有可能行动的集合
  • R是奖励的概率分布,由(状态,行动)给定
  • P是跳到下一状态的概率,由(当前状态,行动)给定
  • γ是奖励的衰退因子

在这里插入图片描述
用马尔可夫决策过程来描述强化学习:

  • 在t=0时刻,环境采样初始状态S0
  • 从t=0到学习结束:
    • agent选择行动At
    • 环境依概率给出奖励Rt(概率由R(.|St,At)决定)
    • 环境依概率给出下一状态St+1(概率由P(.|St,At)决定)
    • agent接收奖励Rt和状态St+1

我们所采取的行动组合a0,a1,a2……称为策略π
而强化学习的目标是找到一个策略π*,使得奖励之和最大
在这里插入图片描述
最直接的解决办法是穷举所有的行动组合,计算每个组合的奖励,把奖励最大的选出来。但这其实有个问题,每次行动后,奖励和下一状态都是环境给予的,有一定的随机性。

也就是说即使每次执行的都是同一个行动组合π,最后的结果也可能相差很大,所以首先要解决奖励之和的随机性,这样我们才能比较哪个组合更好。而解决随机性最常用的方法是求期望

所以现在问题变成了:找到一个π*,使得E(奖励之和)最大
在这里插入图片描述

Q-learning

在解决如何找到最优策略π*之前,为了方便后面描述算法,先定义两个有用的函数:

值函数:在状态为s的情况下,遵从策略π后得到的E(奖励之和)
假设初始状态有3种:S0、S1和S2,那么策略π的E(奖励之和)=Vπ(S0)+Vπ(S1)+Vπ(S2)

Q值函数:在状态为s、行动为a的情况下,遵从策略π后得到的E(奖励之和)
假设状态为s时可采取的行动有3种:A0、A1和A2,那么Vπ(S0)=Qπ(S0,A0)+Qπ(S0,A1)+Qπ(S0,A2)
在这里插入图片描述

给定S0和A0的情况下,最优的策略π*能使Q值函数达到最大,记为Q*

Q*满足bellman等式,这个等式想表达的东西很简单,就是当前最优的Q*=当前奖励r+下一状态下最优的Q*
乍一看这个式子没有任何用,既然我不知道现在的Q*,当然也不会知道下一状态的Q*了。除非一直迭代到最后一个状态,但是前面提到了奖励和下一状态都是随机的,所以直接迭代会非常复杂,这条路行不通。

现在的问题是:Q*太复杂了,没办法直接表达,那能拿什么东西来替代吗?
这就轮到神经网络出场了,神经网络专门解决表达式过于复杂的问题。

假设使用神经网络QL来表示函数Q*,Q*有两个参数——状态s和行动a,那么QL也会有两个输入——s和a(如果行动是离散的,QL也可以设计为:输入s,输出n个标量,每个标量代表某一个行动下的E(奖励之和))。
QL会输出一个标量代表当前状态s和行动a的E(奖励之和),不同的输入会得到不同的E(奖励之和)

那么只要训练神经网络QL,使得QL(Si+1,Ai+1)-QL(Si,Ai)尽可能地接近Ri就可以了,这不就是一个简单的回归模型吗?

在训练好QL后,由于行动是有限的,所以可通过下面的方式找到π*:

  1. 在Si的状态下,使用遍历(行动是离散的)或梯度上升(行动是连续的)得到Ai,使得QL(S0,Ai)最大
  2. 环境根据Si和Ai给出Si+1
  3. 重复1、2步直到结束
  4. π*=A0A1A2……

在这里插入图片描述
上面提到的QL网络还有三个问题:

  1. QL的训练方式是使QL(Si+1,Ai+1)-QL(Si,Ai)尽量接近Ri,每次更新时QL(Si,Ai)和QL(Si+1,Ai+1)的值会同时改变,造成训练的不稳定。
    所以在实际训练中会有两个神经网络,QL和QLtarget,QLtarget-QL尽量接近Ri
    每次反向传播时只更新QL,在经过N次迭代后再把QL的参数赋值给QLtarget
    在这里插入图片描述
  2. 由于QL网络的训练方式是:与环境互动一次,更新QL,根据更新后的QL获得下一行动a,使用a和环境互动……
    下一个行动a与当前行动高度相关,这会导致训练效果不好,就像进入一家新餐厅时,随机点了一道菜,味道还可以,从此以后就再也不尝试其他菜了。
    解决办法是:准备一个缓冲区,每次互动后把数据存入缓冲区,再从缓冲区随机选取数据进行训练
    这种办法还有一个好处,可以多次使用训练数据。一般来说,在强化学习中,与环境互动才是最费时间的。
    在这里插入图片描述
  3. 对于一个复杂的问题,比如让机器人抓住某个物体,Q函数很难通过随机尝试学到一个具体的行动来解决这个问题。那么可不可以换一个方向,不需要机器人学习具体的行动,而是学习一个“握住”的策略?
    在这里插入图片描述

策略梯度

策略梯度网络PG的输入是状态s,输出是下一步采用某个行动的概率p(a|s)(而上面的QL网络的输出是采用某个动作后的E(奖励之和))。

在网络PG固定的情况下,可得到多个策略πθ每个策略有一定的概率
在这里插入图片描述
也可以计算出πθ奖励之和
在这里插入图片描述
如果穷举所有的行为轨迹πθ,那么可以计算出E(奖励之和),记为J(θ)
在这里插入图片描述
J(θ)是由θ决定的,而且我们的目标是最大化J(θ),那么可以考虑对参数θ进行梯度上升(目标函数是J(θ))
在这里插入图片描述
课程里用了好几页PPT和大段大段的公式来讨论J(θ)能不能求导,要怎么进行梯度上升,由于我这里直接把函数看做神经网络GP了,就不展示相应的细节了(神经网络当然可以求导,进行梯度上升也很容易,神经网络牛逼!而且删掉公式之后,脉络越发清晰起来了。)

下面是一些训练技巧:

  1. 增加baseline
    如果奖励永远都是正的,那么任何行动都会导致J(θ)增加,从而增加该行动的概率。
    而所有概率之和为1,其他行动只是不幸没有被采样到就得降低概率,这是不符合要求的。
    所以希望奖励有正有负,这可以通过减去一个baseline来达成,历史奖励平均值是一个常用的baseline。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

SOTA深度强化学习

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
cs231n系列终于写完了,其实后面还有两课,一课是讲硬件加速和模型轻量化,另一课是讲“为什么稍微改变一张熊猫的照片就可以让计算机把它认为是长臂猿(人眼看不出任何差别)”,但对这两个方面不是很熟悉(轻量化还好,后一课真的一知半解的),就不乱写了。

不写的最主要的原因其实是:我进了GAN的深渊……

相关文章:

【深度之眼cs231n第七期】笔记(三十一)

目录 强化学习什么是强化学习?马尔可夫决策过程(MDP)Q-learning策略梯度SOTA深度强化学习 还剩一点小尾巴,还是把它写完吧。(距离我写下前面那行字又过了好几个月了【咸鱼本鱼】)(汗颜&#xff…...

【云安全】云原生-K8S-简介

K8S简介 Kubernetes(简称K8S)是一种开源的容器编排平台,用于管理容器化应用的部署、扩展和运维。它由Google于2014年开源并交给CNCF(Cloud Native Computing Foundation)维护。K8S通过提供自动化、灵活的功能&#xf…...

SpringBoot中Excel表的导入、导出功能的实现

文章目录 一、easyExcel简介二、Excel表的导出2.1 添加 Maven 依赖2.2 创建导出数据的实体类4. 编写导出接口5. 前端代码6. 实现效果 三、excel表的导出1. Excel表导入的整体流程1.1 配置文件存储路径 2. 前端实现2.1 文件上传组件 2.2 文件上传逻辑3. 后端实现3.1 文件上传接口…...

Spark入门(Python)

目录 一、安装Spark 二、Spark基本操作 一、安装Spark pip3 install pyspark 二、Spark基本操作 # 导入spark的SparkContext,SparkConf模块 from pyspark import SparkContext, SparkConf # 导入os模块 import os # 设置PYSPARK的python环境 os.environ[PYSPARK_PYTHON] &…...

Daemon进程创建过程

Daemon创建过程: 1、fork,创建子进程。退出父进程。 2、setsid,创建新会话。脱离原会话、进程组、控制终端。 再次fork,与终端完全脱离。第二次fork的意义???? 先脱离原父进程&#…...

在sortablejs的拖拽排序情况下阻止input拖拽事件

如题 问题 在vue3的elementPlus的table中,通过sortablejs添加了行拖拽功能,但是在行内会有输入框,此时拖拽输入框会触发sortablejs的拖拽功能 解决 基于这个现象,我怀疑是由于拖拽事件未绑定而冒泡到后面的行上从而导致的拖拽…...

C++初阶—string类

第一章:为什么要学习string类 1.1 C语言中的字符串 C语言中,字符串是以\0结尾的一些字符的集合,为了操作方便,C标准库中提供了一些str系列的库函数,但是这些库函数与字符串是分离开的,不太符合OOP的思想&…...

C# 提取PDF表单数据

目录 使用工具 C# 提取多个PDF表单域的数据 C# 提取特定PDF表单域的数据 PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景。凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用。然而,当需要整合…...

算法刷题Day28:BM66 最长公共子串

题目链接,点击跳转 题目描述: 解题思路: 方法一:暴力枚举 遍历str1的每个字符x,并在str2中寻找以相同元素x为起始的最长字符串。记录最长的公共子串及其长度。 代码实现: def LCS(self, str1: str, st…...

论文阅读笔记:MambaOut: Do We Really Need Mamba for Vision?

论文阅读笔记:MambaOut: Do We Really Need Mamba for Vision? 1 背景2 创新点3 方法4 模块4.1 Mamba适合什么任务4.2 视觉识别任务是否有很长的序列4.3 视觉任务是否需要因果token混合模式4.4 关于Mamba对于视觉的必要性假设 5 效果 论文:https://arxi…...

HarmonyOS:ForEach:循环渲染

一、前言 ForEach接口基于数组类型数据来进行循环渲染,需要与容器组件配合使用,且接口返回的组件应当是允许包含在ForEach父容器组件中的子组件。例如,ListItem组件要求ForEach的父容器组件必须为List组件。 API参数说明见:ForEa…...

Python3 【函数】项目实战:5 个新颖的学习案例

Python3 【函数】项目实战:5 个新颖的学习案例 本文包含5编程学习案例,具体项目如下: 简易聊天机器人待办事项提醒器密码生成器简易文本分析工具简易文件加密解密工具 项目 1:简易聊天机器人 功能描述: 实现一个简易…...

XSS 漏洞全面解析:原理、危害与防范

目录 前言​编辑 漏洞原理 XSS 漏洞的危害 检测 XSS 漏洞的方法 防范 XSS 漏洞的措施 前言 在网络安全的复杂版图中,XSS 漏洞,即跨站脚本攻击(Cross - Site Scripting),是一类极为普遍且威胁巨大的安全隐患。随着互…...

从 GShard 到 DeepSeek-V3:回顾 MoE 大模型负载均衡策略演进

作者:小天狼星不来客 原文:https://zhuanlan.zhihu.com/p/19117825360 故事要从 GShard 说起——当时,人们意识到拥有数十亿甚至数万亿参数的模型可以通过某种形式的“稀疏化(sparsified)”来在保持高精度的同时加速训…...

【回溯+剪枝】回溯算法的概念 全排列问题

文章目录 46. 全排列Ⅰ. 什么是回溯算法❓❓❓Ⅱ. 回溯算法的应用1、组合问题2、排列问题3、子集问题 Ⅲ. 解题思路:回溯 剪枝 46. 全排列 46. 全排列 ​ 给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 …...

Flutter解决macbook M芯片Android Studio中不显示IOS真机的问题

下载了最新的Android Studio LadyBug 下载了最新的xcode16.2 结果,只有安卓真机才在Android studio显示, IOS真机只在xcode显示 IOS真机不在android studio显示。 解决方法是: 在终端运行如下命令: sudo xcode-select -s /Applic…...

自签证书的dockerfile中from命令无法拉取镜像而docker的pull命令能拉取镜像

问题现象: docker pull images拉取镜像正常 dockerfile中的from命令拉取镜像就会报出证书错误。报错信息如下: [bjxtbwj-kvm-test-jenkins-6-243 ceshi_dockerfile]$ docker build . [] Building 0.4s (3/3) FINISHED …...

【MySQL】--- 复合查询 内外连接

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏: MySQL 🏠 基本查询回顾 假设有以下表结构: 查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为…...

QT TLS initialization failed

qt使用QNetworkAccessManager下载文件(给出的链接可以在浏览器里面下载文件),下载失败, 提示“TLS initialization failed”通常是由于Qt在使用HTTPS进行文件下载时,未能正确初始化TLS(安全传输层协议&…...

系统学英语 — 句法 — 复合句

目录 文章目录 目录复合句型主语从句宾语从句表语从句定语从句状语从句同位语从句 复合句型 复合句型,即:从句。在英语中,除了谓语之外的所有句子成分都可以使用从句来充当。 主语从句 充当主语的句子,通常位于谓语之前&#x…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现

摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

Java毕业设计:WML信息查询与后端信息发布系统开发

JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息&#xff0…...

push [特殊字符] present

push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...