langchain基础(二)
一、输出解析器(Output Parser)
作用:(1)让模型按照指定的格式输出;
(2)解析模型输出,提取所需的信息
1、逗号分隔列表
CommaSeparatedListOutputParser:
规定模型输出为以逗号分隔的字符串形式(它是自然语言意义上的列表,不是 Python 意义上的列表),解析时再将逗号分隔的字符串转成列表。
#使用CommaSeparatedListOutputParser限制模型输出格式,并对输出进行解析,将其转换为列表形式。from langchain.output_parsers import CommaSeparatedListOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain_community.chat_models import ChatOpenAI# 初始化模型
model=ChatOpenAI(model="gpt-3.5-turbo",base_url="https://api.gptsapi.net/v1",)#构建消息列表
prompt = ChatPromptTemplate.from_messages([ #构建提示模板("system", "{parser_instructions}"),("human", "列出5个{subject}色系的十六进制颜色码。")
])output_parser=CommaSeparatedListOutputParser() #创建输出解析器(以逗号分隔的列表)
parser_instructions=output_parser.get_format_instructions() #获取解析器的指令
print(parser_instructions) #Your response should be a list of comma separated values, eg: `foo, bar, baz` or `foo,bar,baz`final_prompt=prompt.invoke( #将变量填充,生成最终提示{"parser_instructions":parser_instructions,"subject":"莫兰迪"}
)# 调用模型并输出结果
response=model.invoke(final_prompt)
print(type(response)) #<class 'langchain_core.messages.ai.AIMessage'>
print(response.content) # #F0A202, #FFCD75, #F8E6A0, #EAE0C8, #E1D9B7response2list=output_parser.invoke(response) #使用output_parser的invoke方法对模型的响应response进行解析
print(response2list) #['#F0A202', '#FFCD75', '#F8E6A0', '#EAE0C8', '#E1D9B7']
系统消息("{parser_instructions}")
,此消息位置用于传递输出解析器的指令,告诉模型如何格式化输出。
创建CommaSeparatedListOutputParser
实例output_parser
,用于解析模型输出。
通过output_parser.get_format_instructions()
获取输出格式指令,这些指令会告诉模型应以逗号分隔的列表形式输出结果。打印这些指令可查看具体内容,例如:“你的回答应该是一个逗号分隔的列表,不包含任何其他解释或说明。”
使用output_parser
的invoke
方法对模型的响应response
进行解析。output_parser
会按照之前定义的格式指令,将模型输出转换为 Python 列表。
对于output_parser的invoke函数,
Union[str, BaseMessage]
是 Python typing
模块中的类型注解,表示 input
参数可以是 str
类型(字符串类型)或者 BaseMessage
类型。Union
用于指定一个参数可以是多种类型中的任意一种。
2、JSON
# 从给定的书籍概述中提取书名、作者以及书籍体裁等信息,并将提取结果解析为 Pydantic 模型对象from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import ChatPromptTemplate
from pydantic import BaseModel,Field
from typing import List
from langchain_community.chat_models import ChatOpenAI# 初始化模型
model=ChatOpenAI(model="gpt-3.5-turbo",base_url="https://api.gptsapi.net/v1",)# 消息列表
## 定义数据输出和解析格式,获取parser_instructions
class BookInfo(BaseModel):book_name:str=Field(description="书籍的名字",example="百年孤独")author_name:str=Field(description="书籍的作者",example="加西亚·马尔克斯")genres:List[str]=Field(description="书籍的体裁",example=["小说","文学"])output_parser=PydanticOutputParser(pydantic_object=BookInfo) #将BookInfo类作为参数传递,用于将模型输出解析为BookInfo对象
parser_instructions=output_parser.get_format_instructions()
print(parser_instructions)## 构建提示模板
prompt=ChatPromptTemplate.from_messages([("system","{parser_instructions}。你输出的结果请使用中文。"),("human","请你帮我从书籍概述中,提取书名、作者,以及书籍的体裁。书籍概述会被三个#符号包围。\n###{book_introduction}###")]
)book_introduction="""
《明朝那些事儿》,作者是当年明月。2006 年 3 月在天涯社区首次发表,
2009 年 3 月 21 日连载完毕,边写作边集结成书出版发行,一共 7 本。
《明朝那些事儿》主要讲述的是从 1344 年到 1644 年这三百年间关于明朝的一些故事。
以史料为基础,以年代和具体人物为主线,并加入了小说的笔法,语言幽默风趣。
对明朝十六帝和其他王公权贵和小人物的命运进行全景展示,
尤其对官场政治、战争、帝王心术着墨最多,并加入对当时政治经济制度、人伦道德的演义。
它以一种网络语言向读者娓娓道出三百多年关于明朝的历史故事、人物。
其中原本在历史中陌生、模糊的历史人物在书中一个个变得鲜活起来。
《明朝那些事儿》为读者解读历史中的另一面,让历史变成一部活生生的生活故事。"""## 将格式指令和书籍概述填充到提示模板中,生成最终的提示
final_prompt=prompt.invoke({"parser_instructions":parser_instructions,"book_introduction":book_introduction}
)# 调用模型并输出结果
response=model.invoke(final_prompt)
print(response.content)response2bookinfo=output_parser.invoke(response) #将模型的响应response解析为BookInfo对象response2bookinfo
print(response2bookinfo)
print(response2bookinfo.book_name)
print(response2bookinfo.author_name)
print(response2bookinfo.genres)
1、pydantic是一个功能强大的python库,主要用于数据验证、数据解析和数据序列化。
数据验证:
(1)类型检查:对输入的数据进行严格的类型检查,确保数据符合模型定义的类型。例如,在定义一个用户模型时,可以指定用户的年龄为整数类型,如果传入的数据不是整数,
pydantic
会抛出验证错误。(2)范围和约束检查:为字段设置范围和约束条件,如最大长度、最小长度、最大值、最小值等。
数据解析:
自动类型转换: 可以自动将输入的数据转换为模型定义的类型。例如,输入的字符串形式的数字可以自动转换为整数或浮点数。
数据序列化:
模型实例可以方便地转换为字典(.dict)或 JSON 字符串(.json),便于数据的存储和传输。
补充:dict和json的区别
如果你只在 Python 内部处理数据,字典可能更合适;而如果涉及到数据的传输或存储,尤其是跨系统的交互,JSON 字符串通常是更好的选择。
2、BaseModel
和Field
来自pydantic
库,它们具有以下作用:BaseModel是一个基类,用于创建数据模型类。通过继承BaseModel,可以快速定义具有数据验证、序列化和反序列化等功能的数据模型。
比如BookInfo类继承自BaseModel,这使得BookInfo类可以利用pydantic提供的自动验证功能,确保数据符合定义的类型和约束条件。
Field是用于定义模型字段的函数。它为模型中的字段(
book_name
、author_name
和genres
)提供额外的元数据和配置选项,如字段的描述(descripton)、示例(example)等。这些信息在生成文档、进行数据验证以及帮助开发者、AI理解代码逻辑等方面都非常有帮助。
3、打印指令print(parser_instructions)
开头部分说明了输出应该被格式化为一个符合给定 JSON 模式的 JSON 实例,并通过一个示例展示了什么样的输出是符合模式的,什么样的输出是不符合模式的。
JSON Schema(schema模式,用于规范实际存储的书籍信息的结构和规则):“说明书”
输出json:
4、输出的json本质上是字符串,将其转为类实例更容易提取对应信息
result.book_name就可以直接得到书名了。
5、from typing import List
在 Python 3.9 之前需要引入
List
来实现更精确的类型提示,而 Python 3.9 及以后可以直接使用内置的list
完成类似功能。不过,为了保持代码在不同 Python 版本之间的兼容性,很多项目仍然会使用typing
模块中的类型。
相关文章:

langchain基础(二)
一、输出解析器(Output Parser) 作用:(1)让模型按照指定的格式输出; (2)解析模型输出,提取所需的信息 1、逗号分隔列表 CommaSeparatedListOutputParser:…...

数据库安全管理中的权限控制:保护数据资产的关键措施
title: 数据库安全管理中的权限控制:保护数据资产的关键措施 date: 2025/2/2 updated: 2025/2/2 author: cmdragon excerpt: 在信息化迅速发展的今天,数据库作为关键的数据存储和管理中心,已经成为了企业营运和决策的核心所在。然而,伴随着数据规模的不断扩大和数据价值…...

Leetcode598:区间加法 II
题目描述: 给你一个 m x n 的矩阵 M 和一个操作数组 op 。矩阵初始化时所有的单元格都为 0 。ops[i] [ai, bi] 意味着当所有的 0 < x < ai 和 0 < y < bi 时, M[x][y] 应该加 1。 在 执行完所有操作后 ,计算并返回 矩阵中最大…...

【Proteus】NE555纯硬件实现LED呼吸灯效果,附源文件,效果展示
本文通过NE555定时器芯片和简单的电容充放电电路,设计了一种纯硬件实现的呼吸灯方案,并借助Proteus仿真软件验证其功能。方案无需编程,成本低且易于实现,适合电子爱好者学习PWM(脉宽调制)和定时器电路原理。 一、呼吸灯原理与NE555功能分析 1. 呼吸灯核心原理 呼吸灯的…...

SAP HCM insufficient authorization, no.skipped personnel 总结归纳
导读 权限:HCM模块中有普通权限和结构化权限。普通权限就是PFCG的权限,结构化权限就是按照部门ID授权,颗粒度更细,对分工明细化的单位尤其重要,今天遇到的问题就是结构化权限的问题。 作者:vivi,来源&…...

五. Redis 配置内容(详细配置说明)
五. Redis 配置内容(详细配置说明) 文章目录 五. Redis 配置内容(详细配置说明)1. Units 单位配置2. INCLUDES (包含)配置3. NETWORK (网络)配置3.1 bind(配置访问内容)3.2 protected-mode (保护模式)3.3 port(端口)配置3.4 timeout(客户端超时时间)配置3.5 tcp-keepalive()配置…...

4 [危机13小时追踪一场GitHub投毒事件]
事件概要 自北京时间 2024.12.4 晚间6点起, GitHub 上不断出现“幽灵仓库”,仓库中没有任何代码,只有诱导性的病毒文件。当天,他们成为了 GitHub 上 star 增速最快的仓库。超过 180 个虚假僵尸账户正在传播病毒,等待不…...

Shadow DOM举例
这东西具有隔离效果,对于一些插件需要append一些div倒是不错的选择 <!DOCTYPE html> <html lang"zh-CN"> <head> <meta charset"utf-8"> <title>演示例子</title> </head> <body> <style&g…...

力扣动态规划-18【算法学习day.112】
前言 ###我做这类文章一个重要的目的还是记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴!!! 习题 1.下降路径最小和 题目链接:931. …...

网络基础
协议 协议就是约定 网络协议是协议中的一种 协议分层 协议本身也是软件,在设计上为了更好的模块化,解耦合,也是设计成为层状结构的 两个视角: 小白:同层协议,直接通信 工程师:同层协议&…...

使用 EXISTS 解决 SQL 中 IN 查询数量过多的问题
在 SQL 查询中,当我们面对需要在 IN 子句中列举大量数据的场景时,查询的性能往往会受到显著影响。这时候,使用 EXISTS 可以成为一种优化的良方。 问题的来源 假设我们有两个表,orders 和 customers,我们需要查询所有…...

使用SpringBoot发送邮件|解决了部署时连接超时的bug|网易163|2025
使用SpringBoot发送邮件 文章目录 使用SpringBoot发送邮件1. 获取网易邮箱服务的授权码2. 初始化项目maven部分web部分 3. 发送邮件填写配置EmailSendService [已解决]部署时连接超时附:Docker脚本Dockerfile创建镜像启动容器 1. 获取网易邮箱服务的授权码 温馨提示…...

Ruby Dir 类和方法详解
Ruby Dir 类和方法详解 引言 在 Ruby 中,Dir 是一个非常有用的类,用于处理文件系统中的目录。它提供了许多方便的方法来列出目录内容、搜索文件、以及处理文件系统的其他相关操作。本文将详细介绍 Ruby 的 Dir 类及其常用方法。 一、Dir 类概述 Dir …...

克隆OpenAI(基于openai API和streamlit)
utils.py: from langchain_openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationChain import osdef get_chat_response(api_key,prompt,memory): # memory不能是函数的内部局部变量&…...

位运算算法题
一.判断字符是否唯一 法一: 我们直接借助一个字符数组来模拟哈希表统计字符串即可,并且我们没有必要先将所有字符都放入字符数组中,边插入边判断,当我们要插入某个字符的时候,发现其已经出现了,此时必然重复…...

12 向量结构模块(vector.rs)
一vector.rs源码 // Copyright 2013 The Servo Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE…...

Android车机DIY开发之学习篇(六)编译讯为3568开发板安卓
Android车机DIY开发之学习篇(六)编译讯为3568开发板安卓 1.SDK解压到家目录下的 rk3588_android_sdk 目录 一. 全部编译 ###安装所需环境 sudo apt-get update sudo apt-get install git-core gnupg flex bison gperf build-essential zip curl zlib1g-dev gcc-multilib g…...

Codeforces Round 863 (Div. 3) E. Living Sequence
题目链接 头一回用不是正解的方法做出来,也是比较极限,直接说做法就是二分数位dp 数位 d p dp dp 求 1 − n 1-n 1−n出现多少含 4 4 4的数字个数 这纯纯板子了 \sout{这纯纯板子了} 这纯纯板子了 设 f ( x ) f(x) f(x) 为 1 − x 1-x 1−x 中含有4的…...

一文讲解HashMap线程安全相关问题(上)
HashMap不是线程安全的,主要有以下几个问题: ①、多线程下扩容会死循环。JDK1.7 中的 HashMap 使用的是头插法插入元素,在多线程的环境下,扩容的时候就有可能导致出现环形链表,造成死循环。 JDK 8 时已经修复了这个问…...

MFC 创建Ribbon样式窗口
然后点击下一步直到完成即可...

uv 安装包
是的,你可以使用 uv 来安装 Python 包。uv 是一个高性能的 Python 包安装器和解析器,由 astral.sh 团队开发,旨在替代 pip 和 pip-tools,提供更快的包安装体验。 ### 如何使用 uv 安装包 1. **安装 uv**: 如果你还…...

IELTS口语练习题库
IELTS口语1-4月题库 Part 1 Gifts Have you ever sent handmade gifts to others? Yes, I have. I once made a scrapbook for my best friend’s birthday. It included photos of our memories together and some handwritten notes. She loved it because it was personal…...

图书管理系统 Axios 源码__获取图书列表
目录 核心功能 源码介绍 1. 获取图书列表 技术要点 适用人群 本项目是一个基于 HTML Bootstrap JavaScript Axios 开发的图书管理系统,可用于 添加、编辑、删除和管理图书信息,适合前端开发者学习 前端交互设计、Axios 数据请求 以及 Bootstrap 样…...

基于OSAL的嵌入式裸机事件驱动框架——整体架构调度机制
参考B站up主【架构分析】嵌入式祼机事件驱动框架 感谢大佬分享 任务ID : TASK_XXX TASK_XXX 在系统中每个任务的ID是唯一的,范围是 0 to 0xFFFE,0xFFFF保留为SYS_TSK_INIT。 同时任务ID的大小也充当任务调度的优先级,ID越大&#…...

c++ string类 +底层模拟实现
提醒: 本片博客只是小编的听课笔记,介意勿看。 基础 包含在头文件<string>,才能使用string类似函数接口。 string常见构造类 string s1; cin>>s1;//无参构造 string s2(s1);//拷贝构造 string s1("jfksa");//传参构造 三种…...

六十分之三十七——一转眼、时光飞逝
一、目标 明确可落地,对于自身执行完成需要一定的努力才可以完成的 1.第三版分组、激励、立体化权限、智能设备、AIPPT做课 2.8本书 3.得到:头条、吴军来信2、卓克科技参考3 4.总结思考 二、计划 科学规律的,要结合番茄工作法、快速阅读、…...

Shell基础:中括号的使用
在Shell脚本中,中括号([ ... ] 和 [[ ... ]])是一种常见的条件测试结构。它们用于进行文件类型检查、值比较以及逻辑判断。通过了解它们的不同特点和用法,能够帮助你编写更加高效、安全且易读的脚本。本文将详细介绍Shell中单中括…...

《基于Scapy的综合性网络扫描与通信工具集解析》
在网络管理和安全评估中,网络扫描和通信是两个至关重要的环节。Python 的 Scapy 库因其强大的网络数据包处理能力,成为开发和实现这些功能的理想工具。本文将介绍一个基于 Scapy 编写的 Python 脚本,该脚本集成了 ARP 扫描、端口扫描以及 TCP…...

面经--C语言——sizeof和strlen,数组和链表,#include <>和 #include ““ #define 和typedef 内存对齐概述
文章目录 sizeof 和 strlen数组和链表总结 #include <>和 #include ""#define 和typedef内存对齐概述对齐规则示例:结构体的内存对齐分析: 内存对齐的常见规则:填充字节的计算对齐影响的实际例子 sizeof 和 strlen 特性size…...

使用 Kotlin 将 Vertx 和 Springboot 整合
本篇文章目的是将 Springboot 和 Vertx 进行简单整合。整合目的仅仅是为了整活,因为两个不同的东西整合在一起提升的性能并没有只使用 Vertx 性能高,因此追求高性能的话这是在我来说不推荐。而且他们不仅没有提高很多性能甚至增加了学习成本 一、整合流…...