当前位置: 首页 > news >正文

大厂面试题备份20250201

20250201

面试策略

如果三面往后遇到传说中让人忍受不了的业余面试官,就舔着苟过去,入职大概率见不着他,但一二面遇到,反问环节就主动说不够match,让释放流程。

机器/深度学习

百面机器学习

5.4 通用CS

计算机网络、操作系统、计算机组成原理、数据库和设计模式,这些我从来没被问过。反而经常会被问数据结构和一些常用的搬砖工具,但是非常浅,这部分适当瞄一眼就ok。

  • 数组、链表、栈、队列、堆
  • list,array,vector,unordered_set,set,dict等数据结构的底层怎么实现的
  • 二叉树、平衡树、搜索树和红黑树,各种树的演变
  • python装饰器、深拷贝浅拷贝、垃圾回收机制
  • shell、git、hadoop、spark

还有些面试官喜欢问一些偏概率和数学的东西,下面是一些常见的概率题,最好准备一下。

  • 用rand7构造rand10
  • 山羊汽车问题
  • 木棍截成三段,形成三角形的概率
  • 抛一个6面的骰子,连续抛直到6为止,问期望的抛的次数是多少
  • 给定概率不均匀的0和1随机生成器,怎样等概率随机生成0和1
  • 三角形里面随机选3个点,构成锐角三角形的概率
  • 两个人轮流抛硬币,规定第一个抛出正面的人可以吃苹果,求先抛的人吃苹果的概率
  • 一副扑克牌,分成三堆,大小王出现在同一份的概率
  • 在半径为1的圆内随机等概率采样一个点

6. 手撕代码

6.1 刷题网站

  • LeetBook:https://leetcode-cn.com/leetbook/
  • 剑指Offer:https://leetcode-cn.com/problem-list/e8X3pBZi/
  • Hot-100:https://leetcode-cn.com/problem-list/2cktkvj/
  • Tag:https://leetcode-cn.com/problemset/all/
  • Labuladong:labuladong 的算法小抄 :: labuladong的算法小抄
  • LeetCode 101:https://github.com/changgyhub/leetcode_101
  • CodeTop:https://codetop.cc/home

如果你学习能力和自制力都比较强,准备2个月差不多可以搞定。

刷LeetBook入门。从简单的数组章节开始,逐步加大难度,往难的动态规划之类恶心人的算法上刷。LeetBook把题目都给归类好了,刷题前也会介绍一些基本概念和常用的套路模版,方便没系统学习过的面友们入门和巩固。刷完LeetBook你的LeetCode榜大概就有100多道了,这时对各类算法问题都会有一个清晰的概念。

重点刷剑指Offer和Hot-100。这上面的题面试出现的概率非常高,而且难度也适中,不恶心人。最好重复刷,确保这上面的题目出现你是能秒的。刷完这部分就可以开始甩简历,难度一般都不会超出这个范围。

CodeTop刷意向部门岗位的面试原题。通常面试都是约下午或晚上,当天你会特别紧张,啥也不想干,这时候可以刷一下这个爆料网站的题目缓解一下

代码策略

面试遇到没见过的题尽可能先往暴力的方向想,先确保你自己能做出来,不要嫌弃想法过于傻逼和繁琐就不说出来,没准就是这样做的,写出来一种方案总比啥都没写好。而且你想出了暴力写法,面试官大概率会提醒你,让你继续优化。

尽可能让面试官觉得你现场是在思考的,先假装在纸上写写画画,然后有思路了和面试官分析这类问题(不要说题目)应该怎样解决,通常用啥算法或模版优化,最后再开始写代码。

好些次面试官都问我能不能写c++,我都反向画饼地说“本科肯定是用过的,但是最近两年一直在用python,上一次用c艹还是保研机试,现在写不了了,不过以后工作有需要捡起来也不会很难”。

但是笔试环节是都需要自己构建控制台输入,平常要注意练习一下,不要小看这小小的输入环节,可以去牛客浏览下有多少人笔试是死在输入边界条件处理不对。

笔试是一个容易翻车的环节,笔试和面试的题目差异非常大,并且笔试会相对偏门和琐碎一些,很容易出边界错误导致卡case,面友们可以到牛客网找一些企业真题体验一下。

7. 反问

反问环节通常都会有15-20分钟左右,我基本都问下面几个问题,面试官也都很乐于解答。大伙有啥特别想知道的都可以大大方方的问,但是尽可能要注意下用词,礼貌一些。有些交叉面和加面没有反问环节,因为面试官不是你面试小组的人,写完题就结束面试。

  • 小组大概是做什么的,业务方向、具体用到的技术栈和目前遇到的挑战和瓶颈
  • 小组成立多久、规模多少人、有哪些base、在公司定位以及资源倾斜、未来几年发展规划
  • 怎样培养新人,新人过去大概的上手流程是怎样的,会有多长的适应期
  • 小组内的工作强度怎样,每天大概几点上班和几点下班,周末加班吗
  • x老师,针对刚刚的面试表现,您觉得我还有哪些方面要再加强一下
  • x老师,我最近比较有空,如果您觉得我还ok的话,可以尽快帮我排一下后面的流程

相关文章:

大厂面试题备份20250201

20250201 面试策略 如果三面往后遇到传说中让人忍受不了的业余面试官,就舔着苟过去,入职大概率见不着他,但一二面遇到,反问环节就主动说不够match,让释放流程。 机器/深度学习 百面机器学习 5.4 通用CS 计算机网…...

w191教师工作量管理系统的设计与实现

🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…...

Git 版本控制:基础介绍与常用操作

目录 Git 的基本概念 Git 安装与配置 Git 常用命令与操作 1. 初始化本地仓库 2. 版本控制工作流程 3. 分支管理 4. 解决冲突 5. 回退和撤销 6. 查看提交日志 前言 在软件开发过程中,开发者常常需要在现有程序的基础上进行修改和扩展。但如果不加以管理&am…...

讲清逻辑回归算法,剖析其作为广义线性模型的原因

1、逻辑回归算法介绍 逻辑回归(Logistic Regression)是一种广义线性回归分析模型。虽然名字里带有“回归”两字,但其实是分类模型,常用于二分类。既然逻辑回归模型是分类模型,为什么名字里会含有“回归”二字呢?这是因为其算法原…...

数据结构(1)——算法时间复杂度与空间复杂度

目录 前言 一、算法 1.1算法是什么? 1.2算法的特性 1.有穷性 2.确定性 3.可行性 4.输入 5.输出 二、算法效率 2.1衡量算法效率 1、事后统计方法 2、事前分析估计方法 2.2算法的复杂度 2.3时间复杂度 2.3.1定义 2.3.2大O渐进表示法 2.3.3常见时间复…...

K8s运维管理平台 - xkube体验:功能较多

目录 简介Lic安装1、需要手动安装MySQL,**建库**2、启动命令3、[ERROR] GetNodeMetric Fail:the server is currently unable to handle the request (get nodes.metrics.k8s.io qfusion-1) 使用总结优点优化 补充1:layui、layuimini和beego的详细介绍1.…...

spring源码阅读系列文章目录

对于spring认识首先要了解 spring相关概念术语,然后是如下的几句话牢记并反射出来: Bean怎么来的,通过BeanDefinitionBeanDefinition有Spring框架内置的,有手动定义或者自动配置扫描出来的(写个Demo工程)B…...

快速提升网站收录:利用网站新闻发布功能

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/63.html 利用网站新闻发布功能快速提升网站收录是一个有效的策略。以下是一些具体的建议,帮助你更好地利用这一功能: 一、保持新闻更新频率 搜索引擎尤其重视网站的…...

【14】WLC3504 HA配置实例

1.概述 本文档使用 Cisco WLC 3504 实现无线控制器的高可用性。这里所指的HA是指WLC设备box-to-box的冗余。换句话说,即1:1的设备冗余,其中一个 WLC 将处于Active活动状态,而第二个 WLC 将处于Standby-hot热待机状态,通过RP冗余端口持续监控活动 WLC 的运行状况。两个 WLC…...

什么是LPU?会打破全球算力市场格局吗?

在生成式AI向垂直领域纵深发展的关键节点,一场静默的芯片革命正在改写算力规则。Groq研发的LPU(Language Processing Unit)凭借其颠覆性架构,不仅突破了传统GPU的性能天花板,更通过与DeepSeek等国产大模型的深度协同&a…...

智慧物业管理系统实现社区管理智能化提升居民生活体验与满意度

内容概要 智慧物业管理系统,顾名思义,是一种将智能化技术融入社区管理的系统,它通过高效的手段帮助物业公司和居民更好地互动与沟通。首先,这个系统整合了在线收费、停车管理等功能,让居民能够方便快捷地完成日常支付…...

Vue3 表单:全面解析与最佳实践

Vue3 表单:全面解析与最佳实践 引言 随着前端技术的发展,Vue.js 已经成为最受欢迎的前端框架之一。Vue3 作为 Vue.js 的最新版本,带来了许多改进和新的特性。其中,表单处理是 Vue 应用中不可或缺的一部分。本文将全面解析 Vue3 …...

MySQl的日期时间加

MySQL日期相关_mysql 日期加减-CSDN博客MySQL日期相关_mysql 日期加减-CSDN博客 raise notice 查询目标 site:% model:% date:% target:%,t_shipment_date.site,t_shipment_date.model,t_shipment_date.plant_date,v_date_shipment_qty_target;...

实战:如何利用网站日志诊断并解决收录问题?

本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/50.html 利用网站日志诊断并解决收录问题是一种非常有效的方法。以下是一个实战指南,帮助你如何利用网站日志来诊断并解决网站的收录问题: 一、获取并分析网站日志 …...

每日一题——有效括号序列

有效括号序列 题目描述数据范围:复杂度要求: 示例题解代码实现代码解析1. 定义栈和栈操作2. 栈的基本操作3. 主函数 isValid4. 返回值 时间和空间复杂度分析 题目描述 给出一个仅包含字符 (, ), {, }, [, ] 的字符串,判断该字符串是否是一个…...

PyTorch数据建模

回归分析 import torch import numpy as np import pandas as pd from torch.utils.data import DataLoader,TensorDataset import time strat = time.perf_counter()...

OpenAI 实战进阶教程 - 第二节:生成与解析结构化数据:从文本到表格

目标 学习如何使用 OpenAI API 生成结构化数据(如 JSON、CSV 格式)。掌握解析数据并导出表格文件的技巧,以便适用于不同实际场景。 场景背景 假设你是一名开发人员,需要快速生成一批产品信息列表(如名称、价格、描述…...

二叉树--链式存储

1我们之前学了二叉树的顺序存储(这种顺序存储的二叉树被称为堆),我们今天来学习一下二叉树的链式存储: 我们使用链表来表示一颗二叉树: ⽤链表来表⽰⼀棵⼆叉树,即⽤链来指⽰元素的逻辑关系。通常的⽅法是…...

Windows 中的 WSL:开启你的 Linux 之旅

今天在安装windows上安装Docker Desktop的时候,遇到了WSL。下面咱们就学习下。 欢迎来到涛涛聊AI 一、什么是 WSL? WSL,全称为 Windows Subsystem for Linux,是微软为 Windows 系统开发的一个兼容层,它允许用户在 Win…...

2.3学习总结

今天做了下上次测试没做出来的题目,作业中做了一题,看了下二叉树(一脸懵B) P2240:部分背包问题 先求每堆金币的性价比(价值除以重量),将这些金币由性价比从高到低排序。 对于排好…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...

深度学习习题2

1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...