机器学习10
自定义数据集 使用scikit-learn中svm的包实现svm分类
代码
import numpy as np
import matplotlib.pyplot as pltclass1_points = np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])class2_points = np.array([[3.2, 3.2],[3.7, 2.9],[3.2, 2.6],[1.7, 3.3],[3.4, 2.6],[4.1, 2.3],[3.0, 2.9]])x1_data = np.concatenate((class1_points[:, 0], class2_points[:, 0]))
x2_data = np.concatenate((class1_points[:, 1], class2_points[:, 1]))
y = np.concatenate((np.ones(class1_points.shape[0]), -np.ones(class2_points.shape[0])))w1 = 0.1
w2 = 0.1
b = 0
learning_rate = 0.05l_data = x1_data.sizefig, (ax1, ax2) = plt.subplots(2, 1)step_list = np.array([]) # 初始化为空数组
loss_values = np.array([]) # 初始化为空数组num_iterations = 1000
for n in range(1, num_iterations + 1):z = w1 * x1_data + w2 * x2_data + byz = y * zloss = 1 - yzloss[loss < 0] = 0hinge_loss = np.mean(loss)loss_values = np.append(loss_values, hinge_loss)step_list = np.append(step_list, n)gradient_w1 = 0gradient_w2 = 0gradient_b = 0for i in range(len(y)):if loss[i] > 0:gradient_w1 += -y[i] * x1_data[i]gradient_w2 += -y[i] * x2_data[i]gradient_b += -y[i]gradient_w1 /= len(y)gradient_w2 /= len(y)gradient_b /= len(y)w1 -= learning_rate * gradient_w1w2 -= learning_rate * gradient_w2b -= learning_rate * gradient_b# 显示频率设置frequence_display = 50if n % frequence_display == 0 or n == 1:if np.abs(w2) < 1e-5:continuex1_min, x1_max = 0, 6x2_min, x2_max = -(w1 * x1_min + b) / w2, -(w1 * x1_max + b) / w2ax1.clear()ax1.scatter(x1_data[:len(class1_points)], x2_data[:len(class1_points)], c='red', label='Class 1')ax1.scatter(x1_data[len(class1_points):], x2_data[len(class1_points):], c='blue', label='Class 2')ax1.plot((x1_min, x1_max), (x2_min, x2_max), 'r-')ax1.set_title(f"SVM: w1={round(w1.item(), 3)}, w2={round(w2.item(), 3)}, b={round(b.item(), 3)}")ax2.clear()ax2.plot(step_list, loss_values, 'g-')ax2.set_xlabel("Step")ax2.set_ylabel("Loss")# 显示图形plt.pause(1)plt.show()
效果展示

相关文章:
机器学习10
自定义数据集 使用scikit-learn中svm的包实现svm分类 代码 import numpy as np import matplotlib.pyplot as pltclass1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])class2_points np.array([[3.2, 3.2],[3.7, 2.9],…...
【Block总结】CoT,上下文Transformer注意力|即插即用
一. 论文信息 标题: Contextual Transformer Networks for Visual Recognition论文链接: arXivGitHub链接: https://github.com/JDAI-CV/CoTNet 二. 创新点 上下文Transformer模块(CoT): 提出了CoT模块,能够有效利用输入键之间的上下文信息…...
linux库函数 gettimeofday() localtime的概念和使用案例
在Linux系统中,gettimeofday() 和 localtime() 是两个常用的时间处理函数,分别用于获取高精度时间戳和将时间戳转换为本地时间。以下是它们的概念和使用案例的详细说明: 1. gettimeofday() 函数 概念 功能:获取当前时间…...
编程题-电话号码的字母组合(中等)
题目: 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 解法一(哈希表动态添加)&#x…...
EasyExcel使用详解
文章目录 EasyExcel使用详解一、引言二、环境准备与基础配置1、添加依赖2、定义实体类 三、Excel 读取详解1、基础读取2、自定义监听器3、多 Sheet 处理 四、Excel 写入详解1、基础写入2、动态列与复杂表头3、样式与模板填充 五、总结 EasyExcel使用详解 一、引言 EasyExcel 是…...
基于“蘑菇书”的强化学习知识点(二):强化学习中基于策略(Policy-Based)和基于价值(Value-Based)方法的区别
强化学习中基于策略(Policy-Based)和基于价值(Value-Based)方法的区别 摘要强化学习中基于策略(Policy-Based)和基于价值(Value-Based)方法的区别1. 定义与核心思想(1) 基于策略的方…...
民法学学习笔记(个人向) Part.2
民法学学习笔记(个人向) Part.2 民法始终在解决两个生活中的核心问题: 私法自治;交易安全; 3. 自然人 3.4 个体工商户、农村承包经营户 都是特殊的个体经济单位; 3.4.1 个体工商户 是指在法律的允许范围内,依法经…...
物业管理系统源码驱动社区管理革新提升用户满意度与服务效率
内容概要 在当今社会,物业管理正面临着前所未有的挑战,尤其是在社区管理方面。人们对社区安全、环境卫生、设施维护等日常生活需求愈发重视,物业公司必须提升服务质量,以满足居民日益增长的期望。而物业管理系统源码的出现&#…...
租房管理系统助力数字化转型提升租赁服务质量与用户体验
内容概要 随着信息技术的快速发展,租房管理系统正逐渐成为租赁行业数字化转型的核心工具。通过全面集成资产管理、租赁管理和物业管理等功能,这种系统力求为用户提供高效便捷的服务体验。无论是工业园、产业园还是写字楼、公寓,租房管理系统…...
Ollama教程:轻松上手本地大语言模型部署
Ollama教程:轻松上手本地大语言模型部署 在大语言模型(LLM)飞速发展的今天,越来越多的开发者希望能够在本地部署和使用这些模型,以便更好地控制数据隐私和计算资源。Ollama作为一个开源工具,旨在简化大语言…...
Baklib推动数字化内容管理解决方案助力企业数字化转型
内容概要 在当今信息爆炸的时代,数字化内容管理成为企业提升效率和竞争力的关键。企业在面对大量数据时,如何高效地存储、分类与检索信息,直接关系到其经营的成败。数字化内容管理不仅限于简单的文档存储,更是整合了文档、图像、…...
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
论文链接: [2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 实在太长,自行扔到 Model 里,去翻译去提问吧。 工作原理: 主要技术,就是训练出一些专有用途小模型&…...
DOM 操作入门:HTML 元素操作与页面事件处理
DOM 操作入门:HTML 元素操作与页面事件处理 DOM 操作入门:HTML 元素操作与页面事件处理什么是 DOM?1. 如何操作 HTML 元素?1.1 使用 `document.getElementById()` 获取单个元素1.2 使用 `document.querySelector()` 和 `document.querySelectorAll()` 获取多个元素1.3 创建…...
使用 HTTP::Server::Simple 实现轻量级 HTTP 服务器
在Perl中,HTTP::Server::Simple 模块提供了一种轻量级的方式来实现HTTP服务器。该模块简单易用,适合快速开发和测试HTTP服务。本文将详细介绍如何使用 HTTP::Server::Simple 模块创建和配置一个轻量级HTTP服务器。 安装 HTTP::Server::Simple 首先&…...
C++滑动窗口技术深度解析:核心原理、高效实现与高阶应用实践
目录 一、滑动窗口的核心原理 二、滑动窗口的两种类型 1. 固定大小的窗口 2. 可变大小的窗口 三、实现细节与关键点 1. 窗口的初始化 2. 窗口的移动策略 3. 结果的更新时机 四、经典问题与代码示例 示例 1:和 ≥ target 的最短子数组(可变窗口…...
基于构件的软件开发方法
摘要: 本人在2023年1月参与广东某公司委托我司开发的“虚拟电厂”项目,主要负责整体架构设计和中间件的选型,该项目为新型电力存储、电力调度、能源交易提供一整套的软件系统,包括设备接入、负载预测、邀约竞价、用户设备调控等功能。本项目以“虚拟电厂”项目为例,讨论基…...
网站快速收录:如何设置robots.txt文件?
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/34.html 为了网站快速收录而合理设置robots.txt文件,需要遵循一定的规则和最佳实践。robots.txt文件是一个纯文本文件,它告诉搜索引擎爬虫哪些页面可以访问ÿ…...
OpenGL学习笔记(六):Transformations 变换(变换矩阵、坐标系统、GLM库应用)
文章目录 向量变换使用GLM变换(缩放、旋转、位移)将变换矩阵传递给着色器坐标系统与MVP矩阵三维变换绘制3D立方体 & 深度测试(Z-buffer)练习1——更多立方体 现在我们已经知道了如何创建一个物体、着色、加入纹理。但它们都还…...
8.攻防世界Web_php_wrong_nginx_config
进入题目页面如下 尝试弱口令密码登录 一直显示网站建设中,尝试无果,查看源码也没有什么特别漏洞存在 用Kali中的dirsearch扫描根目录试试 命令: dirsearch -u http://61.147.171.105:53736/ -e* 登录文件便是刚才登录的界面打开robots.txt…...
【优先算法】专题——位运算
在讲解位运算之前我们来总结一下常见的位运算 一、常见的位运算 1.基础为运算 << &:有0就是0 >> |:有1就是1 ~ ^:相同为0,相异位1 /无进位相加 2.给一个数 n,确定它的二进制表示…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
