当前位置: 首页 > news >正文

信息学奥赛一本通 2113:【24CSPJ普及组】小木棍(sticks) | 洛谷 P11229 [CSP-J 2024] 小木棍

【题目链接】

ybt 2113:【24CSPJ普及组】小木棍(sticks)
洛谷 P11229 [CSP-J 2024] 小木棍

【题目考点】

1. 思维题,找规律

【解题思路】

解法1:找规律

该题为:求n根木棍组成的无前导0的所有可能的数值中的最小数值
要想使最值数值最小,首先考虑让数字位数尽量少。朴素地想,每位数字使用的木棍越多,数字位数越少。一位数字最多使用7根木棍,摆成“8”。
我们可以考虑,将n根木棍不断摆出数字“8”,看最后剩下几根木棍,再做处理。
每次摆出数字“8”用7根木棍,最后剩下的木棍数量为n%7

如果n%7 != 0,那么也可以理解为还差x=7-n%7个木棍,就可以摆出每位都是8的数字。
已知构成每种数字的木棍数,以及距离摆成8还差几根木棍(7减去数字的木棍数)

表1:
数字木棍数距离摆成8还差几根木棍
061
125
252
352
443
552
661
734
870
961

根据上表可知,n根木棍可以摆出的数值最小的数字的位数为 d = ⌈ n / 7 ⌉ d = \lceil n/7 \rceil d=n/7
,n为1时无法摆成数字。

如果n是7的倍数,那么就可以摆出 n / 7 = ⌈ n / 7 ⌉ n/7=\lceil n/7 \rceil n/7=n/7位8
如果n不是7的倍数,那么看在 ⌈ n / 7 ⌉ \lceil n/7 \rceil n/7位8中,去掉1~6根木棍后能否形成合法的无前导0的数字。
观察上表可知,1位"8"在去掉1~5根木棍后都可以剩下非0的数字。
如果需要去掉6根木棍

  • 如果是1位8去掉6根木棍,也就是n=1的情况,这种情况无法构成数字。
  • 如果是2位以上的8去掉6根木棍,那么可以第1位去掉1根,第2位去掉5根,可以得到合法的数字。

根据n%7的值分类讨论,假设数字总位数很大,看还差x根木棍就可以摆出 d d d位“8”时,如何在 d d d位“8”中取走x个木棍,可以使得剩下的木棍摆成的数值最小。总原则是:使高位数字尽可能小。

表2:
n%7x=7-n%7操作
0无操作
16最高位拿走5根变为1,第2位拿走1根变为0
25最高位拿走5根变为1
34最高位拿走2根变为2,第2位拿走1根变为0,第3位拿走1根变为0
43最高位拿走2根变为2,第2位拿走1根变为0
52最高位拿走2根变为2
61最高位拿走1根变为6

只要数字位数 d ≥ 3 d\ge 3 d3,都可以使用上述方法得到n根木棍摆出的最小数字。
对于数字位数 d ≤ 2 d\le 2 d2,也就是 1 ≤ n ≤ 14 1\le n\le 14 1n14的情况,可以手动枚举每种情况可以摆出的最小数字。总原则是:位数尽可能小。位数相同时,首位尽可能小。

表3:
木棍数量摆出的最小数字
1-1(无法摆出数字)
21
37
44
52
66
78
810
918
1022
1120
1228
1368
1488

对于每组数据,先输入n,再求出数字位数 d = ⌈ n / 7 ⌉ d=\lceil n/7 \rceil d=n/7
代码中使用公式: ⌈ a b ⌉ = ⌊ a − 1 b ⌋ + 1 \lceil \frac{a}{b} \rceil=\lfloor \frac{a-1}{b} \rfloor+1 ba=ba1+1

  • 如果数字位数 d ≤ 2 d\le 2 d2,则根据表3,直接通过木棍数量得出其可以构造出的最小数字。
  • 如果数字位数 d ≥ 3 d\ge 3 d3,则根据n%7的值以及表2,得到拼出的数字的前几位,后面的每位都是8。

【题解代码】

解法1:找规律

#include<bits/stdc++.h>
using namespace std;
#define N 100005
int minNum[20] = {0, -1 ,1 ,7 ,4 ,2 ,6 ,8 ,10 ,18 ,22 ,20 ,28 ,68 ,88};//minNum[i]:i根小木棍拼出有前导0的最小数字
int pn[7] = {0, 10, 1, 200, 20, 2, 6}, pd[7] = {0, 2, 1, 3, 2, 1, 1};//pn[i]:n%7==i时前几位摆出的数字 pd[i]:pn[i]的位数 
int main()
{int t, n, d;cin >> t;while(t--){cin >> n;//木棍数 d = (n-1)/7+1;//拼成的数字的总位数 if(d <= 2)cout << minNum[n] << endl;//如果n为1,拼不成数字,会输出-1 else{if(n%7 > 0)//只要n不是7的倍数,则需要通过pn输出前几位 cout << pn[n%7];for(int i = 1; i <= d-pd[n%7]; ++i)//pn[n%7]有pd[n&7]位,还需要输出d-pd[n%7]位8 cout << 8;cout << endl;}} return 0;
}

相关文章:

信息学奥赛一本通 2113:【24CSPJ普及组】小木棍(sticks) | 洛谷 P11229 [CSP-J 2024] 小木棍

【题目链接】 ybt 2113&#xff1a;【24CSPJ普及组】小木棍&#xff08;sticks&#xff09; 洛谷 P11229 [CSP-J 2024] 小木棍 【题目考点】 1. 思维题&#xff0c;找规律 【解题思路】 解法1&#xff1a;找规律 该题为&#xff1a;求n根木棍组成的无前导0的所有可能的数…...

安装hami的笔记

k3s环境下安装hami提示如下错误&#xff1a; "failed to “StartContainer” for “kube-scheduler” with InvalidImageName: "Failed to apply default image tag “registry.cn-hangzhou.aliyuncs.com/google_containers/kube-scheduler:v1.31.2k3s1”: 没有Inva…...

【区块链】区块链密码学基础

&#x1f308;个人主页: 鑫宝Code &#x1f525;热门专栏: 闲话杂谈&#xff5c; 炫酷HTML | JavaScript基础 ​&#x1f4ab;个人格言: "如无必要&#xff0c;勿增实体" 文章目录 区块链密码学基础引言一、哈希函数1.1 基本概念1.2 数学表达 二、非对称加密2.1…...

强化学习笔记(5)——PPO

PPO视频课程来源 首先理解采样期望的转换 变量x在p(x)分布下&#xff0c;函数f(x)的期望 等于f(x)乘以对应出现概率p(x)的累加 经过转换后变成 x在q(x)分布下&#xff0c;f(x)*p(x)/q(x) 的期望。 起因是&#xff1a;求最大化回报的期望&#xff0c;所以对ceta求梯度 具体举例…...

【C语言入门】解锁核心关键字的终极奥秘与实战应用(三)

目录 一、auto 1.1. 作用 1.2. 特性 1.3. 代码示例 二、register 2.1. 作用 2.2. 特性 2.3. 代码示例 三、static 3.1. 修饰局部变量 3.2. 修饰全局变量 3.3. 修饰函数 四、extern 4.1. 作用 4.2. 特性 4.3. 代码示例 五、volatile 5.1. 作用 5.2. 代码示例…...

寒假day10

第十天&#xff1a;请写出以下几个数据的类型 整数 a int a的地址 int* 存放a的数组b …...

本地部署与使用SenseVoice语音大模型简析

前言 SenseVoice 是一种语音基础模型&#xff0c;具有多种语音理解功能&#xff0c;包括自动语音识别 (ASR)、口语识别 (LID)、语音情感识别 (SER) 和音频事件检测 (AED)。本博客将指导您安装和使用 SenseVoice 模型&#xff0c;使其尽可能方便用户使用。 Github 仓库链接: ht…...

Kafka SASL/SCRAM介绍

文章目录 Kafka SASL/SCRAM介绍1. SASL/SCRAM 认证机制2. SASL/SCRAM 认证工作原理2.1 SCRAM 认证原理2.1.1 密码存储和加盐2.1.2 SCRAM 认证流程 2.2 SCRAM 认证的关键算法2.3 SCRAM 密码存储2.4 SCRAM 密码管理 3. 配置和使用 Kafka SASL/SCRAM3.1 Kafka 服务器端配置3.2 创建…...

中间件漏洞之CVE-2024-53677

目录 什么是struts&#xff1f;CVE-2024-53677简介影响版本复现环境搭建漏洞利用修复 什么是struts&#xff1f; 在早期的 Java Web 开发中&#xff0c;代码往往混乱不堪&#xff0c;难以维护和扩展。比如&#xff0c;一个简单的用户登录功能&#xff0c;可能在不同的 Java 类…...

pytorch基于 Transformer 预训练模型的方法实现词嵌入(tiansz/bert-base-chinese)

以下是一个完整的词嵌入&#xff08;Word Embedding&#xff09;示例代码&#xff0c;使用 modelscope 下载 tiansz/bert-base-chinese 模型&#xff0c;并通过 transformers 加载模型&#xff0c;获取中文句子的词嵌入。 from modelscope.hub.snapshot_download import snaps…...

Windows电脑本地部署运行DeepSeek R1大模型(基于Ollama和Chatbox)

文章目录 一、环境准备二、安装Ollama2.1 访问Ollama官方网站2.2 下载适用于Windows的安装包2.3 安装Ollama安装包2.4 指定Ollama安装目录2.5 指定Ollama的大模型的存储目录 三、选择DeepSeek R1模型四、下载并运行DeepSeek R1模型五、常见问题解答六、使用Chatbox进行交互6.1 …...

区间覆盖问题

文章目录 1. 题面2. 简单分析3. 代码解答4. TLE的2点可能 1. 题面 给定 N N N个区间 [ a i , b i ] [a_i,b_i] [ai​,bi​] 以及一个区间 [ s , t ] [s,t] [s,t]&#xff0c;请你选择尽量少的区间&#xff0c;将指定区间完全覆盖。 输出最少区间数&#xff0c;如果无法完全…...

【LLM-agent】(task2)用llama-index搭建AI Agent

note LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool&#xff0c;循环执行&#xff1a;推理、行动、观察、优化推理、重复进行。可以在 arize_phoenix 中看到 agent 的具体提示词&#xff0c;工具被装换成了提示词ReActAgent 使得业务自动向代码转换成为可能&am…...

SpringAI 人工智能

随着 AI 技术的不断发展&#xff0c;越来越多的企业开始将 AI 模型集成到其业务系统中&#xff0c;从而提升系统的智能化水平、自动化程度和用户体验。在此背景下&#xff0c;Spring AI 作为一个企业级 AI 框架&#xff0c;提供了丰富的工具和机制&#xff0c;可以帮助开发者将…...

【axios二次封装】

axios二次封装 安装封装使用 安装 pnpm add axios封装 // 进行axios二次封装&#xff1a;使用请求与响应拦截器 import axios from axios import { ElMessage } from element-plus//创建axios实例 const request axios.create({baseURL: import.meta.env.VITE_APP_BASE_API,…...

P7497 四方喝彩 Solution

Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1​,a2​,⋯,an​)&#xff0c;有 m m m 个操作&#xff0c;分四种&#xff1a; add ⁡ ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v)&#xff1a;对于所有 i ∈ [ l , r ] i \in [l,r…...

深入剖析 Bitmap 数据结构:原理、应用与优化策略

深入理解 Bitmap 数据结构 一、引言 在计算机科学领域&#xff0c;数据的高效存储和快速处理一直是核心问题。随着数据量的不断增长&#xff0c;如何用最少的空间和最快的速度来表示和操作数据变得至关重要。Bitmap&#xff08;位图&#xff09;作为一种简洁而强大的数据结构…...

bypass hcaptcha、hcaptcha逆向

可以过steam&#xff0c;已支持并发&#xff0c;欢迎询问&#xff01; 有事危&#xff0c;ProfessorLuoMing...

WebForms DataList 深入解析

WebForms DataList 深入解析 引言 在Web开发领域,控件是构建用户界面(UI)的核心组件。ASP.NET WebForms框架提供了丰富的控件,其中DataList控件是一个灵活且强大的数据绑定控件。本文将深入探讨WebForms DataList控件的功能、用法以及在实际开发中的应用。 DataList控件…...

C# List 列表综合运用实例⁓Hypak原始数据处理编程小结

C# List 列表综合运用实例⁓Hypak原始数据处理编程小结 1、一个数组解决很麻烦引出的问题1.1、RAW 文件尾部数据如下:1.2、自定义标头 ADD 或 DEL 的数据结构如下&#xff1a; 2、程序 C# 源代码的编写和剖析2.1、使用 ref 关键字&#xff0c;通过引用将参数传递&#xff0c;以…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败&#xff0c;具体原因是客户端发送了密码认证请求&#xff0c;但Redis服务器未设置密码 1.为Redis设置密码&#xff08;匹配客户端配置&#xff09; 步骤&#xff1a; 1&#xff09;.修…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

JVM虚拟机:内存结构、垃圾回收、性能优化

1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

小木的算法日记-多叉树的递归/层序遍历

&#x1f332; 从二叉树到森林&#xff1a;一文彻底搞懂多叉树遍历的艺术 &#x1f680; 引言 你好&#xff0c;未来的算法大神&#xff01; 在数据结构的世界里&#xff0c;“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的&#xff0c;它…...