当前位置: 首页 > news >正文

建设工程规划许可证在哪个网站查询/seo智能优化软件

建设工程规划许可证在哪个网站查询,seo智能优化软件,国内做色情网站,做我的世界皮肤壁纸的网站人工智能例子汇总:AI常见的算法和例子-CSDN博客 独立成分分析 (Independent Component Analysis, ICA) 是一种用于信号分离和降维的统计方法,常用于盲源分离 (Blind Source Separation, BSS) 问题,例如音频信号分离或脑电信号 (EEG) 处理。…

 人工智能例子汇总:AI常见的算法和例子-CSDN博客 

独立成分分析 (Independent Component Analysis, ICA) 是一种用于信号分离和降维的统计方法,常用于盲源分离 (Blind Source Separation, BSS) 问题,例如音频信号分离或脑电信号 (EEG) 处理。

实现 ICA(独立成分分析)

步骤

  1. 生成混合信号数据:创建多个独立信号并混合它们。
  2. 中心化 (Centering) & 白化 (Whitening):对数据进行标准化以提高收敛速度。
  3. 迭代优化解混矩阵:使用非高斯性 (Negentropy) 作为优化目标,应用梯度上升法。
  4. 获得独立成分:通过训练的解混矩阵恢复源信号。

例子代码:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt# 1. 生成数据
torch.manual_seed(42)
num_samples = 1000s1 = torch.sin(torch.linspace(0, 8 * torch.pi, num_samples))  # 正弦波
s2 = torch.sign(torch.sin(torch.linspace(0, 8 * torch.pi, num_samples)))  # 方波
S = torch.stack([s1, s2])  # (2, num_samples)# 2. 生成混合信号 X = A @ S
mixing_matrix = torch.tensor([[1.0, 0.5], [0.5, 1.0]], dtype=torch.float32)
X = mixing_matrix @ S  # (2, num_samples)# 3. 数据预处理 (去中心化)
X_mean = X.mean(dim=1, keepdim=True)
X_centered = X - X_mean# 4. 白化处理 (ZCA 白化)
cov = (X_centered @ X_centered.T) / num_samples
eigvals, eigvecs = torch.linalg.eigh(cov)
eigvals = torch.clamp(eigvals, min=1e-5)  # 避免负数
whitening_matrix = eigvecs @ torch.diag(1.0 / torch.sqrt(eigvals)) @ eigvecs.T
X_white = whitening_matrix @ X_centered  # 白化后的数据# 5. 定义 ICA 模型
class ICA(nn.Module):def __init__(self, n_components):super().__init__()self.W = nn.Parameter(torch.eye(n_components))  # 初始化为单位矩阵def forward(self, X):return self.W @ X# 6. 训练 ICA
ica = ICA(n_components=2)
optimizer = optim.Adam([ica.W], lr=0.01)def neg_entropy(y):return torch.mean(torch.tanh(y), dim=1)num_epochs = 1000
for epoch in range(num_epochs):optimizer.zero_grad()Y = ica(X_white)  # 通过 W 提取信号loss = -torch.sum(neg_entropy(Y))  # 负熵最大化loss.backward()optimizer.step()# 7. 使用 QR 分解保持 W 近似正交with torch.no_grad():ica.W.copy_(torch.linalg.qr(ica.W)[0])  # QR 正交化# 8. 信号恢复
separated = ica(X_white).detach().cpu().numpy()  # 确保 NumPy 兼容性# 9. 绘图
plt.figure(figsize=(10, 5))plt.subplot(3, 1, 1)
plt.plot(S.T.detach().cpu().numpy())  # 确保 NumPy 兼容
plt.title("Original Source Signals")plt.subplot(3, 1, 2)
plt.plot(X.T.detach().cpu().numpy())  # 确保 NumPy 兼容
plt.title("Mixed Signals")plt.subplot(3, 1, 3)
plt.plot(separated.T)  # 直接使用 NumPy 数据
plt.title("Recovered Signals (ICA)")plt.tight_layout()
plt.show()

代码解析

  1. 数据生成

    • 生成两个独立信号:一个 正弦波 和一个 方波
    • 通过 随机混合矩阵 将它们混合成两个观察信号。
  2. 数据预处理

    • 去中心化 (Centering):减去均值,使数据零均值。
    • 白化 (Whitening):对数据进行 PCA 变换,确保协方差矩阵为单位矩阵,提高 ICA 的效果。
  3. ICA 训练

    • 定义解混矩阵 WWW,使用 PyTorch 梯度优化
    • 采用 非高斯性(Negentropy)最大化 原则来优化,使用 tanh 近似 Negentropy。
    • 梯度更新 W,并在训练过程中 保持 W 近似正交 以防止数值发散。
  4. 信号恢复

    • 训练完成后,W 将学习到 解混变换,将 X 投影到独立信号空间,即可恢复原始信号。

相关文章:

独立成分分析 (ICA):用于信号分离或降维

人工智能例子汇总:AI常见的算法和例子-CSDN博客 独立成分分析 (Independent Component Analysis, ICA) 是一种用于信号分离和降维的统计方法,常用于盲源分离 (Blind Source Separation, BSS) 问题,例如音频信号分离或脑电信号 (EEG) 处理。…...

为什么会有函数调用参数带标签的写法?Swift函数调用的参数传递需要加前缀是否是冗余?函数调用?函数参数?

为什么会有函数调用参数带标签的写法? ObjC函数参数形式与众不同,实参前会加前缀,尤其参数很多的情况,可读性很强。例如: [person setAge: 29 setSex:1 setClass: 35]; 这种参数前面加前缀描述也被叫标签(Label). 注意&#xff0…...

实际操作 检测缺陷刀片

号he 找到目标图像的缺陷位置,首先思路为对图像进行预处理,灰度-二值化-针对图像进行轮廓分析 //定义结构元素 Mat se getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); morphologyEx(thre, tc, MORPH_OPEN, se, Point(-1, -1), 1); …...

使用Pygame制作“青蛙过河”游戏

本篇博客将演示如何使用 Python Pygame 从零开始编写一款 Frogger 风格的小游戏。Frogger 是一款早期街机经典,玩家需要帮助青蛙穿越车水马龙的马路到达对岸。本示例提供了一个精简原型,包含角色移动、汽车生成与移动、碰撞检测、胜利条件等关键点。希望…...

BUU17 [RoarCTF 2019]Easy Calc1

自用 源代码 $(#calc).submit(function(){$.ajax({url:"calc.php?num"encodeURIComponent($("#content").val()),type:GET,success:function(data){$("#result").html(<div class"alert alert-success"><strong>答案:&l…...

堆的实现——对的应用(堆排序)

文章目录 1.堆的实现2.堆的应用--堆排序 大家在学堆的时候&#xff0c;需要有二叉树的基础知识&#xff0c;大家可以看我的二叉树文章&#xff1a;二叉树 1.堆的实现 如果有⼀个关键码的集合 K {k0 , k1 , k2 , …&#xff0c;kn−1 } &#xff0c;把它的所有元素按完全⼆叉树…...

新生讲课——图和并查集

1.图的存储 &#xff08;1&#xff09;.邻接矩阵 邻接矩阵可以借助stl中的vector,我们通过开一个二维矩阵,g[u]中存储的是u可以到达的点,定义如下 const int N 2e5 10; vector<int> g[N] 若是遇到带权图则定义如下 const int N 2e5 10; vector <pair <int ,…...

基于深度学习的视觉检测小项目(十七) 用户管理后台的编程

完成了用户管理功能的阶段。下一阶段进入AI功能相关。所有的资源见文章链接。 补充完后台代码的用户管理界面代码&#xff1a; import sqlite3from PySide6.QtCore import Slot from PySide6.QtWidgets import QDialog, QMessageBoxfrom . import user_manage # 导入使用ui…...

实战:利用百度站长平台加速网站收录

本文转自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/33.html 利用百度站长平台加速网站收录是一个实战性很强的过程&#xff0c;以下是一些具体的步骤和策略&#xff1a; 一、了解百度站长平台 百度站长平台是百度为网站管理员提供的一系列工…...

web-XSS-CTFHub

前言 在众多的CTF平台当中&#xff0c;作者认为CTFHub对于初学者来说&#xff0c;是入门平台的不二之选。CTFHub通过自己独特的技能树模块&#xff0c;可以帮助初学者来快速入门。具体请看官方介绍&#xff1a;CTFHub。 作者更新了CTFHub系列&#xff0c;希望小伙伴们多多支持…...

【C++】P1957 口算练习题

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 &#x1f4af;前言&#x1f4af;题目描述输入格式&#xff1a;输出格式&#xff1a; &#x1f4af;我的做法代码实现&#xff1a; &#x1f4af;老师的做法代码实现&#xff1a; &#x1f4af;对比分析&am…...

第二十三章 MySQL锁之表锁

目录 一、概述 二、语法 三、特点 一、概述 表级锁&#xff0c;每次操作锁住整张表。锁定粒度大&#xff0c;发生锁冲突的概率最高&#xff0c;并发度最低。应用在MyISAM、InnoDB、BDB等存储引擎中。 对于表级锁&#xff0c;主要分为以下三类&#xff1a; 1. 表锁 2. 元数…...

linux 进程补充

环境变量 基本概念 环境变量(environment variables)一般是指在操作系统中用来指定操作系统运行环境的一些参数 如&#xff1a;我们在编写C/C代码的时候&#xff0c;在链接的时候&#xff0c;从来不知道我们的所链接的动态静态库在哪 里&#xff0c;但是照样可以链接成功&#…...

渗透测试之文件包含漏洞 超详细的文件包含漏洞文章

目录 说明 通常分为两种类型&#xff1a; 本地文件包含 典型的攻击方式1&#xff1a; 影响&#xff1a; 典型的攻击方式2&#xff1a; 包含路径解释&#xff1a; 日志包含漏洞&#xff1a; 操作原理 包含漏洞读取文件 文件包含漏洞远程代码执行漏洞: 远程文件包含…...

Java 大视界 -- Java 大数据在智能医疗影像诊断中的应用(72)

💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!💖 一、…...

Web - CSS3浮动定位与背景样式

概述 这篇文章主要介绍了 CSS3 中的浮动定位、背景样式、变形效果等内容。包括 BFC 规范与创建方法、浮动的功能与使用要点、定位的多种方式及特点、边框与圆角的设置、背景的颜色、图片等属性、多种变形效果及 3D 旋转等&#xff0c;还提到了浏览器私有前缀。 BFC规范与浏览…...

ConcurrentHashMap线程安全:分段锁 到 synchronized + CAS

专栏系列文章地址&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145290162 本文目标&#xff1a; 理解ConcurrentHashMap为什么线程安全&#xff1b;ConcurrentHashMap的具体细节还需要进一步研究 目录 ConcurrentHashMap介绍JDK7的分段锁实现JDK8的synchr…...

系统学习算法:专题九 穷举vs暴搜vs深搜vs回溯vs剪枝

其中标题的深搜&#xff0c;回溯&#xff0c;剪枝我们之前专题都已经有过学习和了解&#xff0c;这里多了两个穷举和暴搜&#xff0c;其实意思都差不多&#xff0c;穷举就是穷尽力气将所有情况都列举出来&#xff0c;暴搜就是暴力地去一个一个情况搜索&#xff0c;所以就是全部…...

解决 Pandas DataFrame 索引错误:KeyError:0

在使用 Pandas 处理数据时&#xff0c;KeyError 是一个常见的问题&#xff0c;尤其是在尝试通过索引访问数据时。本文将通过一个实际案例&#xff08;使用SKLearn中的MINIST数据集为例&#xff09;&#xff0c;详细分析 KeyError 的原因&#xff0c;并提供解决方法。 1 问题背…...

deepseek的对话风格

概述 deepseek的对话风格&#xff0c;比一般的模型的回答多了思考过程&#xff0c;这是它比较可爱的地方&#xff0c;模型的回答有了思考过程&#xff0c;对用户而言大模型的回答不完全是一个黑盒。 deepseek的对话风格 train_prompt_style """Below is an…...

制造业设备状态监控与生产优化实战:基于SQL的序列分析与状态机建模

目录 1. 背景与挑战 2. 数据建模与采集 2.1 数据表设计 设备状态表(记录设备实时状态变更)...

Javaweb学习之Mysql(Day5)

(一)Mysql概述 (1)MYSQL通用语法 SQL语句可以单行或多行书写,以分号结尾。 SQL语句可以使用空格/缩进来增强语句的可读性(即,空格和缩进不影响代码的执行)。 MySQL数据库的SQL语句不区分大小写。 注释: 1. 单行注释: -- 注释内容 或 # 注释内容 (MySQL 特有 …...

C++ Primer 迭代器

欢迎阅读我的 【CPrimer】专栏 专栏简介&#xff1a;本专栏主要面向C初学者&#xff0c;解释C的一些基本概念和基础语言特性&#xff0c;涉及C标准库的用法&#xff0c;面向对象特性&#xff0c;泛型特性高级用法。通过使用标准库中定义的抽象设施&#xff0c;使你更加适应高级…...

Java的String与StringBuilder例题

​​ package com.jiachen.StringBuilderDemo1;import java.util.Scanner;public class Exercise2 {public static void main(String[] args) {Scanner scanner new Scanner(System.in);String s scanner.nextLine().trim(); // 读取输入并去除前后空格String result;// 根据…...

Vue.js 如何选择合适的组件库

Vue.js 如何选择合适的组件库 大家在开发 Vue.js 项目的时候&#xff0c;都会面临一个问题&#xff1a;我该选择哪个组件库&#xff1f; 市面上有很多优秀的 Vue 组件库&#xff0c;比如 Element Plus、Vuetify、Quasar 等&#xff0c;它们各有特点。选择合适的组件库&#xf…...

github下载失败网页打开失败 若你已经知道github地址如何cmd下载

直接打开命令行&#xff1a; winr cmd 输入&#xff1a;git clone 地址 eg&#xff1a;git clone https://github.com/akospasztor/stm32f103-dfu-bootloader...

排序算法--计数排序

统计每个元素出现的次数&#xff0c;直接计算元素在有序序列中的位置&#xff0c;要求数据是整数且范围有限。适用于数据为小范围整数&#xff08;如年龄、成绩&#xff09;&#xff0c;数据重复率较高时效率更优。可用于小范围整数排序、基数排序的底层排序(作为基数排序的稳定…...

[特殊字符]const在函数前后的作用详解(附经典案例)

理解const在函数前后的位置差异&#xff0c;是掌握C精髓的重要一步。下面用几个超形象的例子&#xff0c;带你彻底搞懂这个知识点&#xff01; 情况1&#xff1a;const在函数后面&#xff08;成员函数限定符&#xff09; 作用&#xff1a;承诺这个成员函数不会修改对象的状态&…...

【字节青训营-7】:初探 Kitex 字节微服务框架(使用ETCD进行服务注册与发现)

本文目录 一、Kitex概述二、第一个Kitex应用三、IDL四、服务注册与发现 一、Kitex概述 长话短说&#xff0c;就是字节跳动内部的 Golang 微服务 RPC 框架&#xff0c;具有高性能、强可扩展的特点&#xff0c;在字节内部已广泛使用。 如果对微服务性能有要求&#xff0c;又希望…...

给AI用工具的能力——Agent

ReAct框架&#xff1a; Reason Action&#xff0c;推理与行动结合 可以借助思维链&#xff0c;用小样本提示展示给模型一个ReAct框架 推理&#xff1a;针对问题或上一步观察的思考 行动&#xff1a;基于推理&#xff0c;与外部环境的一些交互&#xff08;调用外部工具&…...