蓬莱建设局规划处网站/百度推广客户端下载安装
1.const 修饰指针
1.1 const修饰变量
#include <stdio.h>
int main()
{int m = 0;m = 20;//m是可以修改的const int n = 0;n = 20;//n是不能被修改的printf("%d\n",n);return 0;
}
编译结果:
#include <stdio.h>
int main()
{const int n = 0;printf("n = %d\n", n);int*p = &n;*p = 20;printf("n = %d\n", n);return 0;
}
运行结果:
4.2 const修饰指针变量
int * p;//没有const修饰
int const * p;//const 放在*的左边做修饰
int * const p;//const 放在*的右边做修饰
#include <stdio.h>
//代码1 - 测试⽆const修饰的情况
int main()
{int n = 10;int m = 20;int* p = &n;*p = 20;//ok?printf("n = %d\n", n);p = &m; //ok?*p = 30;printf("m = %d\n", m);return 0;
}
运行结果:
#include <stdio.h>
//代码2 - 测试const放在*的左边情况
int main()
{int n = 10;int m = 20;const int* p = &n;*p = 20;//ok?p = &m; //ok?return 0;
}

#include <stdio.h>
//代码3 - 测试const放在*的右边情况
int main()
{int n = 10;int m = 20;int* const p = &n;*p = 20; //ok?p = &m; //ok?return 0;
}
调试结果:

#include <stdio.h>
//代码4 - 测试*的左右两边都有const
int main()
{int n = 10;int m = 20;int const* const p = &n;*p = 20; //ok?p = &m; //ok?return 0;
}
调试结果:
2. 指针运算
2.1 指针+- 整数
int arr[10] = {1,2,3,4,5,6,7,8,9,10};
#include <stdio.h>//指针+- 整数int main(){int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };int* p = &arr[0];int i = 0;int sz = sizeof(arr) / sizeof(arr[0]);for (i = 0; i < sz; i++){printf("%d ", *(p + i));//p+i 这⾥就是指针+整数}return 0;}
运行结果:
2.2 指针-指针
//指针-指针
#include <stdio.h>
int my_strlen(char* s)//这里char* s是用来接收arr数组的首地址&arr[0]
{char* p = s;while (*p != '\0')p++;return p - s;
}
int main()
{char arr[10] = "abcdef";int len = my_strlen(arr);printf("%d\n", len);return 0;
}
运行结果:
通过上述代码,我们可以知道指针-指针的计算可以计算出俩指针之间的元素个数。通过这种方式我们就可以计算出整个数组中的元素个数。
再比如我们写一个简单点的代码:
#include <stdio.h>int main()
{char arr[10] = "abcdef";char* p1 = &arr[0];char* p2 = &arr[3];int num = p2 - p1;printf("%d\n", num);return 0;
}
运行结果:
2.3 指针的关系运算
//指针的关系运算
#include <stdio.h>
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int *p = &arr[0];int sz = sizeof(arr)/sizeof(arr[0]);while(p<arr+sz) //指针的⼤⼩⽐较{printf("%d ", *p);p++;}return 0;
}
运行结果:
3. 野指针
3.1 野指针成因
3.1.1 指针未初始化
#include <stdio.h>
int main()
{ int *p;//局部变量指针未初始化,默认为随机值*p = 20;return 0;
}
3.1.2. 指针越界访问
#include <stdio.h>
int main()
{int arr[10] = {0};int *p = &arr[0];int i = 0;for(i=0; i<=11; i++){//当指针指向的范围超出数组arr的范围时,p就是野指针*(p++) = i;}return 0;
}
3.1.3. 指针指向的空间释放
#include <stdio.h>
int test()
{int n = 100;return &n;
}
//出了函数,n的地址就销毁了
int main()
{int* p = test();//能得到原先的n地址,但可能不是原来 n = 100的值printf("%d\n", *p);return 0;
}
3.2 如何规避野指针
3.2.1 指针初始化
#ifdef __cplusplus#define NULL 0
#else#define NULL ((void *)0)
#endif
#include <stdio.h>
int main()
{int num = 10;int*p1 = #int*p2 = NULL;return 0;
}
3.2.2 小心指针越界
3.2.3 指针变量不再使⽤时,及时置NULL,指针使⽤之前检查有效性
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int* p = &arr[0];for(i=0; i<10; i++){*(p++) = i;}//此时p已经越界了,可以把p置为NULLp = NULL;//下次使⽤的时候,判断p不为NULL的时候再使⽤//...p = &arr[0];//重新让p获得地址if(p != NULL) //判断{//...}return 0;
}
3.2.4 避免返回局部变量的地址
4. assert 断言
assert(p != NULL);
#include <stdio.h>
#include <assert.h>int main()
{int a = 10;int* p = NULL;assert(p != NULL);//不满足条件,程序不往下执行p = &a;*p = 20;printf("%d\n", a);return 0;
}
运行结果:
#define NDEBUG
#include <assert.h>
#define NDEBUG#include <stdio.h>
#include <assert.h>int main()
{int a = 10;int* p = NULL;assert(p != NULL);//不满足条件,程序不往下执行p = &a;*p = 20;printf("%d\n", a);return 0;
}
运行结果:
5. 指针的使用和传址调用
5.1 strlen的模拟实现
size_t strlen ( const char * str );
#define NDEBUG
#include <stdio.h>
#include <assert.h>int my_strlen(const char * str)
{int count = 0;assert(str);while(*str){count++;str++;}return count;
}
int main()
{int len = my_strlen("abcdef");printf("%d\n", len);return 0;
}
运行结果:
5.2 传值调用和传址调用
#include <stdio.h>
void Swap1(int x, int y)
{int tmp = x;x = y;y = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap1(a, b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}
运行结果:
#include <stdio.h>
void Swap2(int* px, int* py)
{int tmp = 0;tmp = *px;*px = *py;*py = tmp;
}
int main()
{int a = 0;int b = 0;scanf("%d %d", &a, &b);printf("交换前:a=%d b=%d\n", a, b);Swap2(&a, &b);printf("交换后:a=%d b=%d\n", a, b);return 0;
}

相关文章:

【C语言】指针详细解读2
1.const 修饰指针 1.1 const修饰变量 变量是可以修改的,如果把变量的地址交给⼀个指针变量,通过指针变量的也可以修改这个变量。 但是如果我们希望⼀个变量加上⼀些限制,不能被修改,怎么做呢?这就是const的作⽤。 #in…...

MongoDB 聚合
MongoDB 中聚合(aggregate)主要用于处理数据(诸如统计平均值,求和等),并返回计算后的数据结果。 有点类似 SQL 语句中的 count(*)。 aggregate() 方法 MongoDB中聚合的方法使用aggregate()。 语法 aggregate() 方法的基本语法格式如下所示࿱…...

LabVIEW涡轮诊断系统
一、项目背景与行业痛点 涡轮机械是发电厂、航空发动机、石油化工等领域的核心动力设备,其运行状态直接关系到生产安全与经济效益。据统计,涡轮故障导致的非计划停机可造成每小时数十万元的经济损失,且突发故障可能引发严重安全事故。传统人…...

机器学习在地震预测中的应用
## 1. 机器学习与地震预测 地震是自然界的一种极端灾害,其发生常常给人们的生命和财产带来极大的威胁。虽然科学家们一直在寻求可靠的方法来预测地震,但由于地震预测本身的复杂性,长期以来难以取得根本性突破。然而,近年来&#x…...

总结11..
#include <stdio.h> #include <string.h> #define MAXN 1001 #define MAXM 1000001 int n, m; char maze[MAXN][MAXN]; int block[MAXN][MAXN]; // 标记每个格子所属的连通块编号 int blockSize[MAXN * MAXN]; // 记录每个连通块的大小 int dx[] {0, 0, 1, -1};…...

c++ 定点 new 及其汇编解释
(1) 代码距离: #include <new> // 需要包含这个头文件 #include <iostream>int main() {char buffer[sizeof(int)]; // 分配一个足够大的字符数组作为内存池int* p new(&buffer) int(42); // 使用 placement new…...

Linux 传输层协议 UDP 和 TCP
UDP 协议 UDP 协议端格式 16 位 UDP 长度, 表示整个数据报(UDP 首部UDP 数据)的最大长度如果校验和出错, 就会直接丢弃 UDP 的特点 UDP 传输的过程类似于寄信 . 无连接: 知道对端的 IP 和端口号就直接进行传输, 不需要建立连接不可靠: 没有确认机制, 没有重传机制; 如果因…...

springCload快速入门
原作者:3. SpringCloud - 快速通关 前置知识: Java17及以上、MavenSpringBoot、SpringMVC、MyBatisLinux、Docker 1. 分布式基础 1.1. 微服务 微服务架构风格,就像是把一个单独的应用程序开发为一套小服务,每个小服务运行在自…...

从 HTTP/1.1 到 HTTP/3:如何影响网页加载速度与性能
一、前言 在最近使用Apipost时,突然注意到了http/1.1和http/2,如下图: 在我根深蒂固的记忆中,对于http的理解还停留在TCP协议、三次握手。由于我的好奇心,于是触发了我被动“开卷”,所以有了这篇文章&…...

人工智能导论-第3章-知识点与学习笔记
参考教材3.2节的内容,介绍什么是自然演绎推理;解释“肯定后件”与“否定前件”两类错误的演绎推理是什么意义,给出具体例子加以阐述。参考教材3.3节的内容,介绍什么是文字(literal);介绍什么是子…...

游戏引擎 Unity - Unity 下载与安装
Unity Unity 首次发布于 2005 年,属于 Unity Technologies Unity 使用的开发技术有:C# Unity 的适用平台:PC、主机、移动设备、VR / AR、Web 等 Unity 的适用领域:开发中等画质中小型项目 Unity 适合初学者或需要快速上手的开…...

鼠标拖尾特效
文章目录 鼠标拖尾特效一、引言二、实现原理1、监听鼠标移动事件2、生成拖尾元素3、控制元素生命周期 三、代码实现四、使用示例五、总结 鼠标拖尾特效 一、引言 鼠标拖尾特效是一种非常酷炫的前端交互效果,能够为网页增添独特的视觉体验。它通常通过JavaScript和C…...

4 前置技术(下):git使用
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 前言...

从零开始:用Qt开发一个功能强大的文本编辑器——WPS项目全解析
文章目录 引言项目功能介绍1. **文件操作**2. **文本编辑功能**3. **撤销与重做**4. **剪切、复制与粘贴**5. **文本查找与替换**6. **打印功能**7. **打印预览**8. **设置字体颜色**9. **设置字号**10. **设置字体**11. **左对齐**12. **右对齐**13. **居中对齐**14. **两侧对…...

解决国内服务器 npm install 卡住的问题
在使用国内云服务器时,经常会遇到 npm install 命令执行卡住的情况。本文将分享一个典型案例以及常见的解决方案。 问题描述 在执行以下命令时: mkdir test-npm cd test-npm npm init -y npm install lodash --verbose安装过程会卡在这个状态…...

DeepSeek 的含金量还在上升
大家好啊,我是董董灿。 最近 DeepSeek 越来越火了。 网上有很多针对 DeepSeek 的推理测评,除此之外,也有很多人从技术的角度来探讨 DeepSeek 带给行业的影响。 比如今天就看到了一篇文章,探讨 DeepSeek 在使用 GPU 进行模型训练…...

使用 Docker(Podman) 部署 MongoDB 数据库及使用详解
在现代开发环境中,容器化技术(如 Docker 和 Podman)已成为部署和管理应用程序的标准方式。本文将详细介绍如何使用 Podman/Docker 部署 MongoDB 数据库,并确保其他应用程序容器能够通过 Docker 网络成功连接到 MongoDB。我们将逐步…...

大模型训练(6):张量并行
0 英文缩写 Pipeline Parallelism(PP)流水线并行Tensor Parallel(TP)张量并行Data Parallelism(DP)数据并行Distributed Data Parallelism(DDP)分布式数据并行Zero Redundancy Opti…...

【力扣】238.除自身以外数组的乘积
AC截图 题目 思路 前缀积 前缀积指的是对于一个给定的数组arr,构建一个新的数组prefixProduct,其中prefixProduct[i]表示原数组从第一个元素到第i个元素(包括i)的所有元素的乘积。形式化来说: prefixProduct[0] ar…...

Nacos 的介绍和使用
1. Nacos 的介绍和安装 与 Eureka 一样,Nacos 也提供服务注册和服务发现的功能,Nacos 还支持更多元数据的管理, 同时具备配置管理功能,功能更丰富。 1.1. windows 下的安装和启动方式 下载地址:Release 2.2.3 (May …...

DeepSeek最新图像模型Janus-Pro论文阅读
目录 论文总结 摘要 1. 引言 2. 方法 2.1 架构 2.2 优化的训练策略 2.4 模型扩展 3. 实验 3.1 实施细节 3.2 评估设置 3.3 与最新技术的比较 3.4 定性结果 4. 结论 论文总结 Janus-Pro是DeepSeek最新开源的图像理解生成模型,Janus-Pro在多模态理解和文…...

【仿12306项目】基于SpringCloud,使用Sentinal对抢票业务进行限流
文章目录 一. 常见的限流算法1. 静态窗口限流2. 动态窗口限流3. 漏桶限流4. 令牌桶限流5. 令牌大闸 二. Sentinal简介三. 代码演示0. 限流场景1. 引入依赖2. 定义资源3. 定义规则4. 启动测试 四. 使用Sentinel控台监控流量1. Sentinel控台1.8.6版本下载地址2. 文档说明…...

【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD彼此之间会存在一定的依赖关系。依赖关系有两种不同的类型:窄依赖和宽依赖。 窄依赖:如果父RDD的每一个分区最多只被一个子RDD的分区使用,这样的依赖关系就是窄依赖;宽依赖:如果父RDD的每一个分区被多个子RD…...

【B站保姆级视频教程:Jetson配置YOLOv11环境(六)PyTorchTorchvision安装】
Jetson配置YOLOv11环境(6)PyTorch&Torchvision安装 文章目录 1. 安装PyTorch1.1安装依赖项1.2 下载torch wheel 安装包1.3 安装 2. 安装torchvisiion2.1 安装依赖2.2 编译安装torchvision2.2.1 Torchvisiion版本选择2.2.2 下载torchvisiion到Downloa…...

Verilog语言学习总结
Verilog语言学习! 目录 文章目录 前言 一、Verilog语言是什么? 1.1 Verilog简介 1.2 Verilog 和 C 的区别 1.3 Verilog 学习 二、Verilog基础知识 2.1 Verilog 的逻辑值 2.2 数字进制 2.3 Verilog标识符 2.4 Verilog 的数据类型 2.4.1 寄存器类型 2.4.2 …...

【阅读笔记】LED显示屏非均匀度校正
一、背景 发光二极管(LED)显示屏具有色彩鲜艳、图像清晰、亮度高、驱动电压低、功耗小、耐震动、价格低廉和使用寿命长等优势。LED显示图像的非均匀度是衡量LED显示屏显示质量的指标,非均匀度过高,会导致LED显示图像出现明暗不均…...

【Java异步编程】CompletableFuture基础(1):创建不同线程的子任务、子任务链式调用与异常处理
文章目录 1. 三种实现接口2. 链式调用:保证链的顺序性与异步性3. CompletableFuture创建CompletionStage子任务4. 处理异常a. 创建回调钩子b. 调用handle()方法统一处理异常和结果 5. 如何选择线程池:不同的业务选择不同的线程池 CompletableFuture是JDK…...

ESXI虚拟机中部署docker会降低服务器性能
在 8 核 16GB 的 ESXi 虚拟机中部署 Docker 的性能影响分析 在 ESXi 虚拟机中运行 Docker 容器时,性能影响主要来自以下几个方面: 虚拟化开销:ESXi 虚拟化层和 Docker 容器化层的叠加。资源竞争:虚拟机与容器之间对 CPU、内存、…...

ASP.NET Core与配置系统的集成
目录 配置系统 默认添加的配置提供者 加载命令行中的配置。 运行环境 读取方法 User Secrets 注意事项 Zack.AnyDBConfigProvider 案例 配置系统 默认添加的配置提供者 加载现有的IConfiguration。加载项目根目录下的appsettings.json。加载项目根目录下的appsettin…...

中间件的概念及基本使用
什么是中间件 中间件是ASP.NET Core的核心组件,MVC框架、响应缓存、身份验证、CORS、Swagger等都是内置中间件。 广义上来讲:Tomcat、WebLogic、Redis、IIS;狭义上来讲,ASP.NET Core中的中间件指ASP.NET Core中的一个组件。中间件…...