当前位置: 首页 > news >正文

品牌网站建设特色/bt种子bt天堂

品牌网站建设特色,bt种子bt天堂,网站后台登入密码忘记了,长沙网络营销师最新招聘信息今天小李哥将开启全新的技术分享系列,为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来生成式 AI 安全市场正迅速发展。据IDC预测,到2025年全球 AI 安全解决方案市场规模将突破200亿美元,年复合增长率超过30%,而Gartn…

今天小李哥将开启全新的技术分享系列,为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来生成式 AI 安全市场正迅速发展。据IDC预测,到2025年全球 AI 安全解决方案市场规模将突破200亿美元,年复合增长率超过30%,而Gartner则预估到2025年约30%的网络攻击将利用生成式AI技术。与此同时,Capgemini的调查显示,近74%的企业认为AI驱动的安全防护至关重要,加上Cybersecurity Ventures报告指出,与生成式AI相关的安全事件年增长率超过20%,这充分表明企业和安全供应商正面临日益严峻的安全挑战,并加大投入以构建更全面的防护体系。今天要介绍的就是如何设计生成式AI应用安全解决方案,抵御OWASP Top 10攻击。未来也会分享更多的AI安全解决方案,欢迎大家关注。

目前我们生活中有各色各样的生成式AI应用,常见的场景之一就是生成式AI对话助手。然而在部署之前,通常还要对应用进行评估,其中包括了解安全态势、监控和日志记录、成本跟踪、弹性等问题。在这些评估中,安全性通常是最高优先级。如果存在无法明确识别的安全风险,我们就无法有效解决这些风向,这可能会阻碍生成式AI应用向生产环境部署的进度。

在本文章中,小李哥将向大家展示一个自己设计的生成式应用的真实场景,并演示如何利用 OWASP安全框架,基于大语言模型应用常见的Top 10安全攻击来评估应用的安全态势,以及实施缓解措施。下图就是一个生成式AI应用的安全解决方案最佳实践,我们将继续从左到右详细介绍本方案中使用到的安全方案细节。

应用控制层

应用层通常容易遭受到诸如LLM01:2025提示注入、LLM05:2025输出处理不当以及LLM02:2025敏感信息泄露等风险。恶意攻击者可能会频繁尝试恶意的提示词输入来操控AI模型,从而可能通过AI模型泄露敏感信息或危及下游的应用系统。

在我们开头的架构图中,应用层的服务器就是亚马逊云科技无服务器计算服务Lambda。它通过从 API Gateway中提取事件的数据部分并进行语法和语义校验,实施严格的输入验证。通过对输入请求进行清洗、应用白名单和需要组织的关键字黑名单,并预定义合法请求的格式和规则进行验证,使用Lambda服务有助于防止LLM01:2025提示注入攻击。此外通过将user_id字段传递到下游应用中,可以使下游应用组件降低敏感信息泄露的风险,从而解决了LLM02:2025敏感信息泄露的问题。

同时亚马逊云科技Bedrock Guardrails提供了额外的大模型输入输出保护层,可过滤和拦截敏感内容,如个人身份信息(PII)以及通过正则表达式定义的自定义敏感数据。Guardrails还有检测和屏蔽攻击性语言、竞争对手名称或其他不希望出现的词语,确保输入和输出均安全。大家还可以利用 Guardrails在有害或操控性的提示词到达AI模型之前就进行检测和过滤,从而防止LLM01:2025提示注入攻击,维护提示词的完整性。

另一个关键的安全方面是管理AI模型的输出。由于AI模型可能生成包含可执行代码的内容,比如 JavaScript或Markdown,如果这些内容处理不当,就存在XSS攻击的风险。为降低此类风险,我们需要使用输出编码技术,例如HTML实体编码或JavaScript转义,在将内容呈现给用户前将任何潜在有害内容进行无害化转换。此方法解决了LLM05:2025输出处理不当的风险。

我们也可以利用亚马逊云科技Bedrock的提示管理和版本控制,使得在不断提升用户体验的同时,也能维持整个应用的安全性。通过完善管理提示词及其处理方式的变更,在增强IA模型功能的同时不会引入新的漏洞,并降低LLM01:2025提示注入攻击的风险。

降低未经授权或非预期的AI模型操作风险的策略的核心就是:“将AI模型视为不受信任的信息来源,并在某些操作上采用人工介入流程”。

亚马逊云科技Bedrock大语言模型与代理层

AI模型与AI模型代理层经常处理与AI模型的交互,面临诸如LLM10:2025不受限制的使用、LLM05:2025输出处理不当以及LLM02:2025敏感信息泄露等风险。

拒绝服务(DoS)攻击可能会通过大量资源密集型请求使AI模型处理不堪重负,从而降低整体服务质量并增加成本。在与亚马逊云科技Bedrock托管的AI模型交互时,设置诸如输入请求的最大长度等请求参数,将有助于降低AI模型资源耗尽的风险。此外亚马逊云科技Bedrock代理对队列中的最大动作数量以及完成客户意图的总动作数都有硬性限制,这限制了系统对AI模型代理基于用户需求所采取的总动作数量,避免了可能耗尽AI模型资源的异常死循环或密集任务。

输出处理不当会导致远程代码执行、跨站脚本(XSS)、服务器端请求伪造(SSRF)以及权限提升等安全漏洞。对AI模型生成的输出在发送到下游服务前,如果验证和管理不佳,就可能间接开放漏洞攻击面,让这些漏洞有机可乘。为降低这一风险,应将模型视为普通的应用用户一样,对 LLM生成的响应进行安全验证。亚马逊云科技Bedrock Guardrails利用可配置阈值的内容过滤器来过滤各种有害内容,并在这些响应被其他后端系统进一步处理之前就进行阻拦,从而简化了这一过程。Guardrails会自动评估用户输入和模型响应,检测并帮助防止有害的内容。

亚马逊云科技Bedrock代理在执行多步骤任务时,与亚马逊云科技原生服务以及外部的第三方服务安全集成,从而有效解决输出处理不安全、过量代理行为和敏感信息泄露的风险。在文章开头的架构图中,代理下的action group中的Lambda服务用于对所有输出文本进行编码,使其自动无法被 JavaScript或Markdown异常执行。此外action group中的Lambda函数会解析和记录代理每一步执行时从AI模型得到的回复,并根据恢复内容相应地控制输出,确保在下一步处理前输出内容完全安全。

敏感信息泄露是AI模型面临的另一大风险,因为恶意的提示工程可能会导致AI模型无意中在响应中泄露不该公开的细节,从而引发AI模型隐私和机密性问题。为缓解这一问题,可以通过亚马逊云科技 Bedrock Guardrails中的内容过滤器实施数据清洗措施。

另外还应根据user_id实施自定义、精细化的数据过滤策略,并根据id执行严格的用户访问策略。亚马逊云科技Bedrock Guardrails可以过滤敏感内容,亚马逊云科技Bedrock代理则通过允许大家在预处理输入的提示词模板和处理响应的提示词模板中实施自定义逻辑来去除任何非预期的有害信息,进一步降低了敏感信息泄露的风险。如果大家已为AI模型启用了模型调用日志记录,或者在应用中实施了自定义日志逻辑,将 AI模型的输入和输出记录到亚马逊云科技CloudWatch中,那我们也需要开启CloudWatch日志数据保护等措施,在CloudWatch日志中识别和屏蔽敏感信息,从而进一步降低敏感信息泄露的风险。


代理插件控制层(action group Lambda函数)

代理插件控制层经常需要与内部和外部服务集成,并对内部和外部数据源以及外部第三方API应用授权。LLM08:2025向量与嵌入薄弱性以及LLM06:2025代理行为过度的风险开始显现。不受信或未经验证的第三方插件可能会以恶意代码的形式引入后门或漏洞。

对与外部系统进行集成交互的action group Lambda函数所使用的IAM角色,应使用最小权限原则原则,有助于解决LLM06:2025代理行为过度和LLM08:2025向量与嵌入薄弱性的风险。从文章开头的架构图可以看出,代理插件层的Lambda函数便是关联了一个最小权限的 IAM 角色,用以安全访问和与其他内部亚马逊云科技服务进行交互。

此外在确定用户身份后,通过将user_id传递给下游集成应用(如代理插件层),通过基于用户id身份授权访问,从而进一步限制数据的访问。虽然这个user_id参数可在代理插件控制层的Lambda函数中用于自定义授权逻辑,但其主要作用就是用于为外部第三方插件提供基于用户身份的细粒度的访问控制。应用所有者有责任在action group Lambda函数中实施自定义授权逻辑,该自定义逻辑需要将user_id参数与开发者预定义授权规则相结合,为第三方API和插件应用配置安全的访问授权级别。此方法将确定性的访问控制应用于非确定性的AI模型前,使得对哪些用户可以访问和执行特定外部第三方插件实现了细粒度控制。

将基于user_id的数据授权与IAM角色的最小权限相结合,一般可最大限度地降低LLM08:2025向量与嵌入薄弱性以及LLM06:2025代理非预期行为的风险。


RAG知识库数据存储层

RAG的数据存储层负责安全地从各类亚马逊云科技上的数据源和外部第三方数据源中检索最新、精准且受到访问控制的数据。在默认情况下,亚马逊云科技Bedrock使用了KMS秘钥服务,加密所有与知识库相关的数据。大家也可以选择使用Customer managed的KMS密钥。在为知识库配置数据提取任务时,还可以使用Custom KMS密钥对任务进行加密。

如果大家想选取OpenSearch Service作为知识库的向量存储,Amazon Bedrock可将大家选择好的 KMS密钥传递给它进行向量数据加密。此外在生成查询知识库响应的会话中,也可以使用KMS密钥对会话进行加密。为了便于安全通信,Amazon Bedrock知识库在与第三方向量存储进行数据交互时,默认使用TLS加密,前提是该服务支持并允许TLS加密传输。

关于用户访问权限控制,亚马逊云科技Bedrock知识库使用筛选来管理对数据的访问权限。大家可以利用文件元数据和过滤功能,在知识库上构建数据隔离访问解决方案。在运行应用时,必须对用户进行身份验证和授权,并在请求中包含该用户的验证信息,以保持准确和一致的访问控制。为了使访问控制持续生效,大家应定期在筛选配置中重新同步配置,以反映用户权限变化。另外用户组也可以作为一个筛选属性,对知识库中的文件进行精细化访问控制。

这种方法有助于解决LLM02:2025敏感信息泄露和LLM08:2025向量与嵌入薄弱性的风险,确保只有授权用户才能访问相关数据。

总结

在本文中,小李哥如何利用亚马逊云科技生成式AI安全合规框架,从亚马逊云科技安全共担责任模型的角度对生成式AI应用分为5大类,对于不同类别我们应用了不同的安全控制。同时我们回顾了一个常见的生成式AI应用的安全架构和最佳实践,再利用OWASP Top 10 for LLM风险评估模型评估了genAI应用安全态势,同时展示了如何利用亚马逊云科技服务有效解决OWASP Top 10 for LLM的常见威胁和风险,从而保护生成式AI应用的系统。想了解更多关于在亚马逊云科技构建安全生成式AI应用和AI安全的信息,欢迎大家关注小李哥不要错过更多精彩文章。

相关文章:

生成式AI安全最佳实践 - 抵御OWASP Top 10攻击 (下)

今天小李哥将开启全新的技术分享系列,为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来生成式 AI 安全市场正迅速发展。据IDC预测,到2025年全球 AI 安全解决方案市场规模将突破200亿美元,年复合增长率超过30%,而Gartn…...

现场流不稳定,EasyCVR视频融合平台如何解决RTSP拉流不能播放的问题?

视频汇聚EasyCVR安防监控视频系统采用先进的网络传输技术,支持高清视频的接入和传输,能够满足大规模、高并发的远程监控需求。平台灵活性强,支持国标GB/T 28181协议、部标JT808、GA/T 1400协议、RTMP、RTSP/Onvif协议、海康Ehome、海康SDK、大…...

文献阅读 250205-Global patterns and drivers of tropical aboveground carbon changes

Global patterns and drivers of tropical aboveground carbon changes 来自 <Global patterns and drivers of tropical aboveground carbon changes | Nature Climate Change> 热带地上碳变化的全球模式和驱动因素 ## Abstract: Tropical terrestrial ecosystems play …...

算法与数据结构(括号匹配问题)

思路 从题干可以看出&#xff0c;只要给出的括号对应关系正确&#xff0c;那么就可以返回true,否则返回false。这个题可以使用栈来解决 解题过程 首先从第一个字符开始遍历&#xff0c;如果是括号的左边&#xff08;‘&#xff08;‘&#xff0c;’[‘&#xff0c;’}‘&…...

订单状态监控实战:基于 SQL 的状态机分析与异常检测

目录 1. 背景与问题 2. 数据准备 2.1 表结构设计 3. 场景分析与实现 3.1 场景 1:检测非法状态转换...

C# 中记录(Record)详解

从C#9.0开始&#xff0c;我们有了一个有趣的语法糖&#xff1a;记录(record)   为什么提供记录&#xff1f; 开发过程中&#xff0c;我们往往会创建一些简单的实体&#xff0c;它们仅仅拥有一些简单的属性&#xff0c;可能还有几个简单的方法&#xff0c;比如DTO等等&#xf…...

YOLOv11-ultralytics-8.3.67部分代码阅读笔记-autobackend.py

autobackend.py ultralytics\nn\autobackend.py 目录 autobackend.py 1.所需的库和模块 2.def check_class_names(names): 3.def default_class_names(dataNone): 4.class AutoBackend(nn.Module): 1.所需的库和模块 # Ultralytics &#x1f680; AGPL-3.0 License …...

Docker使用指南(一)——镜像相关操作详解(实战案例教学,适合小白跟学)

目录 1.镜像名的组成 2.镜像操作相关命令 镜像常用命令总结&#xff1a; 1. docker images 2. docker rmi 3. docker pull 4. docker push 5. docker save 6. docker load 7. docker tag 8. docker build 9. docker history 10. docker inspect 11. docker prune…...

Rust 变量特性:不可变、和常量的区别、 Shadowing

Rust 变量特性&#xff1a;不可变、和常量的区别、 Shadowing Rust 是一门以安全性和性能著称的系统编程语言&#xff0c;其变量系统设计独特且强大。本文将从三个角度介绍 Rust 变量的核心特性&#xff1a;可变性&#xff08;Mutability&#xff09;、变量与常量的区别&#…...

NFT Insider #167:Champions Tactics 角色加入 The Sandbox;AI 助力 Ronin 游戏生态

引言&#xff1a;NFT Insider 由 NFT 收藏组织 WHALE Members、BeepCrypto 联合出品&#xff0c; 浓缩每周 NFT 新闻&#xff0c;为大家带来关于 NFT 最全面、最新鲜、最有价值的讯息。每期周报将从 NFT 市场数据&#xff0c;艺术新闻类&#xff0c;游戏新闻类&#xff0c;虚拟…...

鹧鸪云无人机光伏运维解决方案

在新能源产业蓬勃发展的当下&#xff0c;光伏电站作为清洁能源供应的关键一环&#xff0c;其稳定运行和高效运维至关重要。随着光伏电站规模持续扩大&#xff0c;数量不断增加&#xff0c;传统人工巡检方式的弊端日益显著。人工巡检不仅效率低、人力和时间成本高&#xff0c;而…...

NeuralCF 模型:神经网络协同过滤模型

实验和完整代码 完整代码实现和jupyter运行&#xff1a;https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main 引言 NeuralCF 模型由新加坡国立大学研究人员于 2017 年提出&#xff0c;其核心思想在于将传统协同过滤方法与深度学习技术相结…...

【前端】【Ts】【知识点总结】TypeScript知识总结

一、总体概述 TypeScript 是 JavaScript 的超集&#xff0c;主要通过静态类型检查和丰富的类型系统来提高代码的健壮性和可维护性。它涵盖了从基础数据类型到高级类型、从函数与对象的类型定义到类、接口、泛型、模块化及装饰器等众多知识点。掌握这些内容有助于编写更清晰、结…...

JAVA架构师进阶之路

JAVA架构师进阶之路 前言 苦于网络上充斥的各种java知识&#xff0c;多半是互相抄袭&#xff0c;导致很多后来者在学习java知识中味同嚼蜡&#xff0c;本人闲暇之余整理了进阶成为java架构师所必须掌握的核心知识点&#xff0c;后续会不断扩充。 废话少说&#xff0c;直接上正…...

掌握@PostConstruct与@PreDestroy,优化Spring Bean的初始化和销毁

在Spring中&#xff0c;PostConstruct和PreDestroy注解就像是对象的“入职”和“离职”仪式。 1. PostConstruct注解&#xff1a;这个注解标记的方法就像是员工入职后的“岗前培训”。当一个对象&#xff08;比如一个Bean&#xff09;被Spring容器创建并注入依赖后&#xff0c;…...

Java设计模式:行为型模式→状态模式

Java 状态模式详解 1. 定义 状态模式&#xff08;State Pattern&#xff09;是一种行为型设计模式&#xff0c;它允许对象在内部状态改变时改变其行为。状态模式通过将状态需要的行为封装在不同的状态类中&#xff0c;实现对象行为的动态改变。该模式的核心思想是分离不同状态…...

景联文科技:专业数据采集标注公司 ,助力企业提升算法精度!

随着人工智能技术加速落地&#xff0c;高质量数据已成为驱动AI模型训练与优化的核心资源。据统计&#xff0c;全球AI数据服务市场规模预计2025年突破200亿美元&#xff0c;其中智能家居、智慧交通、医疗健康等数据需求占比超60%。作为国内领先的AI数据服务商&#xff0c;景联文…...

ES面试题

1、Elasticsearch的基本构成&#xff1a; &#xff08;1&#xff09;index 索引&#xff1a; 索引类似于mysql 中的数据库&#xff0c;Elasticesearch 中的索引是存在数据的地方&#xff0c;包含了一堆有相似结构的文档数据。 &#xff08;2&#xff09;type 类型&#xff1a…...

LabVIEW2025中文版软件安装包、工具包、安装教程下载

下载链接&#xff1a;LabVIEW及工具包大全-三易电子工作室http://blog.eeecontrol.com/labview6666 《LabVIEW2025安装图文教程》 1、解压后&#xff0c;双击install.exe安装 2、选中“我接受上述2条许可协议”&#xff0c;点击下一步 3、点击下一步&#xff0c;安装NI Packa…...

算法与数据结构(合并K个升序链表)

思路 有了合并两个链表的基础后&#xff0c;这个的一种方法就是可以进行顺序合并&#xff0c;我们可以先写一个函数用来合并两个链表&#xff0c;再在合并K个链表的的函数中循环调用它。 解题过程 解析这个函数 首先&#xff0c;可以先判断&#xff0c;如果a为空&#xff0c…...

洛谷 P4552 [Poetize6] IncDec Sequence C语言

P4552 [Poetize6] IncDec Sequence - 洛谷 | 计算机科学教育新生态 题目描述 给定一个长度为 n 的数列 a1​,a2​,…,an​&#xff0c;每次可以选择一个区间 [l,r]&#xff0c;使这个区间内的数都加 1 或者都减 1。 请问至少需要多少次操作才能使数列中的所有数都一样&#…...

保姆级教程Docker部署Zookeeper官方镜像

目录 1、安装Docker及可视化工具 2、创建挂载目录 3、运行Zookeeper容器 4、Compose运行Zookeeper容器 5、查看Zookeeper运行状态 6、验证Zookeeper是否正常运行 1、安装Docker及可视化工具 Docker及可视化工具的安装可参考&#xff1a;Ubuntu上安装 Docker及可视化管理…...

javaEE-6.网络原理-http

目录 什么是http? http的工作原理&#xff1a; 抓包工具 fiddler的使用 HTTP请求数据: 1.首行:​编辑 2.请求头(header) 3.空行&#xff1a; 4.正文&#xff08;body&#xff09; HTTP响应数据 1.首行&#xff1a;​编辑 2.响应头 3.空行&#xff1a; 4.响应正文…...

【戒抖音系列】短视频戒除-1-对推荐算法进行干扰

如今推荐算法已经渗透到人们生活的方方面面&#xff0c;尤其是抖音等短视频核心就是推荐算法。 【短视频的危害】 1> 会让人变笨&#xff0c;慢慢让人丧失注意力与专注力 2> 让人丧失阅读长文的能力 3> 让人沉浸在一个又一个快感与嗨点当中。当我们刷短视频时&#x…...

9.建造者模式 (Builder Pattern)

定义 建造者模式&#xff08;Builder Pattern&#xff09;是一种创建型设计模式&#xff0c;旨在将复杂对象的构建过程与它的表示分离&#xff0c;使得同样的构建过程可以创建不同的表示。该模式的核心思想是通过一步步地构建一个复杂的对象&#xff0c;每个步骤独立且可扩展&…...

OpenCV:特征检测总结

目录 一、什么是特征检测&#xff1f; 二、OpenCV 中的常见特征检测方法 1. Harris 角点检测 2. Shi-Tomasi 角点检测 3. Canny 边缘检测 4. SIFT&#xff08;尺度不变特征变换&#xff09; 5. ORB 三、特征检测的应用场景 1. 图像匹配 2. 运动检测 3. 自动驾驶 4.…...

Clion开发STM32时使用stlink下载程序与Debug调试

一、下载程序 先创建一个文件夹&#xff1a; 命名&#xff1a;stlink.cfg 写入以下代码: # choose st-link/j-link/dap-link etc. #adapter driver cmsis-dap #transport select swdsource [find interface/stlink.cfg]transport select hla_swdsource [find target/stm32f4x.…...

电脑开机键一闪一闪打不开

家人们谁懂啊&#xff01;本来打算愉快地开启游戏时光&#xff0c;或者高效处理工作任务&#xff0c;结果按下电脑开机键后&#xff0c;它就只是一闪一闪的&#xff0c;怎么都打不开。相信不少朋友都遭遇过这种令人崩溃的场景&#xff0c;满心的期待瞬间化为焦急与无奈。电脑在…...

深度学习 Pytorch 基础网络手动搭建与快速实现

为了方便后续练习的展开&#xff0c;我们尝试自己创建一个数据生成器&#xff0c;用于自主生成一些符合某些条件、具备某些特性的数据集。 导入相关的包 # 随机模块 import random# 绘图模块 import matplotlib as mpl import matplotlib.pyplot as plt# 导入numpy import nu…...

Sqli-labs靶场实录(一):Basic Challenges

sqli-labs靶场实录:Basic Challenges sql手注基本流程Less-11.1探测注入点1.2判断字段数1.3判断回显位1.4提取数据库基本信息1.5拖取敏感数据 Less-2Less-3Less-4Less5爆表爆列名 Less6爆库爆表爆列名 Less7猜解数据库长度逐字符爆破数据库名 Less8爆库 Less9爆库 Less10Less11…...