自然语言处理NLP入门 -- 第二节预处理文本数据
在自然语言处理(NLP)中,数据的质量直接影响模型的表现。文本预处理的目标是清理和标准化文本数据,使其适合机器学习或深度学习模型处理。本章介绍几种常见的文本预处理方法,并通过 Python 代码进行示例。
2.1 文本清理
文本数据往往包含各种噪音,例如 HTML 标签、特殊字符、空格、数字等。清理文本可以提高模型的准确性。
常见的清理步骤
- 去除 HTML 标签
- 移除特殊字符(如
@#%$&) - 移除数字
- 统一大小写(通常转换为小写)
- 去除多余的空格
Python 示例
import re # 正则表达式库,用于文本匹配和替换text = "Hello, <b>world</b>! Visit us at https://example.com or call 123-456-7890."# 1. 去除HTML标签
text = re.sub(r'<.*?>', '', text)# 2. 去除特殊字符(保留字母和空格)
text = re.sub(r'[^a-zA-Z\s]', '', text)# 3. 转换为小写
text = text.lower()# 4. 去除多余空格
text = " ".join(text.split())print(text)
输出:
hello world visit us at httpsexamplecom or call
2.2 分词(Tokenization)
分词是将文本拆分成单个的单词或子词,是 NLP 任务的基础。
常见分词方法
- 按空格拆分(适用于英文)
- NLTK 分词(更精准)
- spaCy 分词(高效处理大规模数据)
Python 示例
import nltk # 自然语言处理库,提供分词、词性标注、停用词等功能
from nltk.tokenize import word_tokenize, sent_tokenize
import spacy # 现代 NLP 库,优化分词、词性标注等任务nltk.download('punkt_tab') # punkt_tab 是 NLTK 中的分词模型text = "Hello world! This is an NLP tutorial."# 1. 基础空格分词
tokens_space = text.split()
print("空格分词:", tokens_space)# 2. 使用 NLTK 进行分词
tokens_nltk = word_tokenize(text)
print("NLTK 分词:", tokens_nltk)# 3. 使用 spaCy 进行分词
nlp = spacy.load("en_core_web_sm") # 加载预训练的小型英文模型
doc = nlp(text)
tokens_spacy = [token.text for token in doc]
print("spaCy 分词:", tokens_spacy)
输出:
空格分词: ['Hello', 'world!', 'This', 'is', 'an', 'NLP', 'tutorial.']
NLTK 分词: ['Hello', 'world', '!', 'This', 'is', 'an', 'NLP', 'tutorial', '.']
spaCy 分词: ['Hello', 'world', '!', 'This', 'is', 'an', 'NLP', 'tutorial', '.']
注意:
- 空格分词简单但容易出错,如 “NLP tutorial.” 仍包含标点。
- NLTK 和 spaCy 处理得更精准,分离了标点符号。
2.3 词干提取(Stemming)和词形还原(Lemmatization)
在 NLP 任务中,单词的不同形式可能具有相同的含义,例如:
running和runbetter和good
词干提取和词形还原可以将单词标准化,从而提高模型的泛化能力。
词干提取(Stemming)
词干提取是基于规则的词形归一化方法,会粗暴地去掉单词的后缀。
from nltk.stem import PorterStemmer, SnowballStemmer # 词干提取工具stemmer = PorterStemmer() # PorterStemmer 是常用的词干提取方法
words = ["running", "flies", "easily", "studies"]stemmed_words = [stemmer.stem(word) for word in words]
print("Porter Stemmer:", stemmed_words)
输出:
Porter Stemmer: ['run', 'fli', 'easili', 'studi']
缺点:
flies变成了flieasily变成了easili- 可能导致含义丢失
词形还原(Lemmatization)
Lemmatization 通过查找词典将单词转换为其词根形式,更加精确。
from nltk.stem import WordNetLemmatizer
import nltknltk.download('wordnet') # 下载 WordNet 语料库lemmatizer = WordNetLemmatizer()
words = ["running", "flies", "easily", "studies", "better"]lemmatized_words = [lemmatizer.lemmatize(word, pos="v") for word in words]
print("Lemmatization:", lemmatized_words)
输出:
Lemmatization: ['run', 'fly', 'easily', 'study', 'better']
优点:
flies被正确地还原为flystudies被正确地还原为studybetter仍保持其正确形式
2.4 停用词(Stopwords)处理
停用词(Stopwords)是指在文本处理中不重要的高频词,如 is, the, and,可以去除以减少模型计算量。
Python 示例
from nltk import word_tokenize
from nltk.corpus import stopwords # NLTK 提供的停用词库
import nltk
nltk.download('stopwords') # 下载停用词列表text = "This is a simple NLP example demonstrating stopwords removal."words = word_tokenize(text)filtered_words = [word for word in words if word.lower() not in stopwords.words('english')]
print("去除停用词后:", filtered_words)
输出:
去除停用词后: ['simple', 'NLP', 'example', 'demonstrating', 'stopwords', 'removal', '.']
注意:
is,a,this被去掉NLP等关键词被保留
2.5 难点总结
- 分词的不同方法:空格分词 vs. NLTK vs. spaCy,适用于不同场景。
- 词干提取 vs. 词形还原:Stemming 可能会导致错误,而 Lemmatization 更精确但需要额外的词性信息。
- 停用词的处理:某些 NLP 任务(如情感分析)可能需要保留停用词。
2.6 课后练习
练习 1:文本清理
清理以下文本,去掉 HTML 标签、特殊字符、数字,并转换为小写:
text = "Visit our <b>website</b>: https://example.com!!! Call us at 987-654-3210."
练习 2:使用 spaCy 进行分词
使用 spaCy 对以下文本进行分词:
text = "Natural Language Processing is fun and useful!"
练习 3:词形还原
使用 Lemmatization 处理以下单词:
words = ["running", "mice", "better", "studying"]
练习 4:去除停用词
从以下文本中去除停用词:
text = "This is an example sentence demonstrating stopwords removal."
相关文章:
自然语言处理NLP入门 -- 第二节预处理文本数据
在自然语言处理(NLP)中,数据的质量直接影响模型的表现。文本预处理的目标是清理和标准化文本数据,使其适合机器学习或深度学习模型处理。本章介绍几种常见的文本预处理方法,并通过 Python 代码进行示例。 2.1 文本清理…...
02.10 TCP之文件传输
1.思维导图 2.作业 服务器代码: #include <stdio.h> #include <string.h> #include <unistd.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <pthread.h> …...
基于STM32的ADS1230驱动例程
自己在练手项目中用到了ADS1230,根据芯片手册自写的驱动代码,已测可用,希望对将要用到ADS1230芯片的人有所帮助。 芯片:STM32系列任意芯片、ADS1230 环境:使用STM32CubeMX配置引脚、KEIL 部分电路: 代码…...
Bro想要玩github api
Bro想要在vscode 和 rest client插件的帮助下,修改我的github个人信息 ### 先安装REST client插件 ### 文件名test-github.http ### bro需要自己在github develop setting 获得token ### ref link: https://docs.github.com/en/authentication/keeping-your-accoun…...
idea插件开发,如何获取idea设置的系统语言
手打不易,如果转摘,请注明出处! 注明原文:https://zhangxiaofan.blog.csdn.net/article/details/145578160 版本要求 大于 2024.3 错误用法 网上有的说使用:UIUtil com.intellij.util.ui.UIUtil 代码示例…...
怎麼使用靜態住宅IP進行多社媒帳號管理
隨著社交媒體平臺的多樣化,很多人發現一個社媒帳號已經無法滿足需求。以下是幾個常見場景: 企業需求:企業可能需要在不同平臺上運營多個品牌帳號,為每個市場地區單獨設立帳號。個人需求:一些自由職業者或內容創作者可…...
InfiniBand与IP over InfiniBand(IPOIB):实现高性能网络通信的底层机制
在现代高性能计算(HPC)和数据中心环境中,网络通信的效率和性能至关重要。InfiniBand(IB)作为一种高性能的串行计算机总线架构,以其低延迟、高带宽和高可靠性而广泛应用于集群计算和数据中心。IP over InfiniBand(IPOIB)则是在InfiniBand网络上实现IP协议的一种方式,它…...
掌握 PHP 单例模式:构建更高效的应用
在 PHP 应用开发中,资源的高效管理至关重要。单例模式是一种能够帮助我们实现这一目标的设计模式。本文将深入探讨单例模式的概念、工作原理以及在 PHP 项目中何时应该(或不应该)使用它。 什么是单例模式? 单例模式是一种设计模…...
实现限制同一个账号最多只能在3个客户端(有电脑、手机等)登录(附关键源码)
如上图,我的百度网盘已登录设备列表,有一个手机,2个windows客户端。手机设备有型号、最后登录时间、IP等。windows客户端信息有最后登录时间、操作系统类型、IP地址等。这些具体是如何实现的?下面分别给出android APP中采集手机信…...
Python入门全攻略(四)
函数 初识函数 函数:封装具有某种功能的代码块。 函数定义 使用def关键字来定义函数 # 定义函数 def 函数名(): 代码块 # 调用函数 函数名() 函数参数 def 函数名(形参) 代码块 # 调用 函数名(实参) 位置参数 按参数顺序传参 def func(a, b): print(a b)…...
Ubuntu 22.04 - OpenLDAP安装使用(服务器+LAM+客户端)
csdn你…怎么不自动保存了很崩溃啊啊啊啊,我记得发现没保存之后我又改了一遍然后保存了,怎么现在又没了啊啊啊啊,过了这么久我都不记得了啊啊啊啊啊 参考 在 Ubuntu 22.04|20.04|18.04 上安装 OpenLDAP 和 phpLDAPadmin 在 Ubuntu 22.04|20…...
Linux ARM64 将内核虚拟地址转化为物理地址
文章目录 前言一、通用方案1.1 kern_addr_valid1.2 __pa 二、ARM64架构2.1 AT S1E1R2.2 is_kernel_addr_vaild2.3 va2pa_helper 三、demo演示参考资料 前言 本文介绍一种通用的将内核虚拟地址转化为物理地址的方案以及一种适用于ARM64 将内核虚拟地址转化为物理地址的方案&…...
使用 Visual Studio Code (VS Code) 开发 Python 图形界面程序
安装Python、VS Code Documentation for Visual Studio Code Python Releases for Windows | Python.org 更新pip >python.exe -m pip install --upgrade pip Requirement already satisfied: pip in c:\users\xxx\appdata\local\programs\python\python312\lib\site-pa…...
图像处理篇---基本OpenMV图像处理
文章目录 前言1. 灰度化(Grayscale)2. 二值化(Thresholding)3. 掩膜(Mask)4. 腐蚀(Erosion)5. 膨胀(Dilation)6. 缩放(Scaling)7. 旋转…...
一文讲清springboot所有注解
Spring Boot 注释是提供有关 Spring 应用程序信息的元数据。 基于 Spring 构建,涵盖其所有功能, Spring Boot 因其生产就绪环境而迅速成为开发人员的最爱,它允许开发人员直接专注于逻辑,而无需配置和设置的麻烦。 Spring Boot 是一…...
pytest测试专题 - 1.1 运行pytest
<< 返回目录 1 pytest学习笔记 - 1.1 运行pytest 1.1 运行pyest 在命令行执行pytest --help usage: pytest [options] [file_or_dir] [file_or_dir] [...] ... ...1.1.1 pytest不携带参数 pytest不带参数时,会扫描当前目录下的所有目录、子目录中符合测试用…...
Java多线程——线程池的使用
线程饥饿死锁 在单线程的Executor中,如果任务A将任务B提交给同一个Executor,并且等待任务B的结果,就会引发死锁线程池中所有正在执行任务的线程由于等待其他仍处于工作队列中的任务而阻塞 执行时间较长的任务 执行时间较长的任务不仅会造成…...
NO.15十六届蓝桥杯备战|while循环|六道练习(C++)
while循环 while语法形式 while 语句的语法结构和 if 语句⾮常相似,但不同的是 while 是⽤来实现循环的, if 是⽆法实现循环的。 下⾯是 while 循环的语法形式: //形式1 while ( 表达式 )语句; //形式2 //如果循环体想包含更多的语句&a…...
DeepSeek 从入门到精通学习指南,2025清华大学《DeepSeek从入门到精通》正式发布104页pdf版超全解析
DeepSeek 是一款强大的 AI 搜索引擎,广泛应用于企业级数据检索和分析。无论您是初学者还是有经验的用户,掌握 DeepSeek 的使用都能为您的工作带来极大的便利。本文将从入门到精通,详细介绍如何学习和使用 DeepSeek。 链接: https://pan.baid…...
2025年SEO自动优化工具
随着2025年互联网的快速发展,越来越多的企业和个人意识到,拥有一个排名靠前的网站对于吸引客户、增加流量、提高转化率至关重要。而要想让自己的网站脱颖而出,获得更多曝光,最重要的一项工作就是进行SEO优化。传统的SEO优化方式通…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
