当前位置: 首页 > news >正文

[开源]MaxKb+Ollama 构建RAG私有化知识库

MaxKb+Ollama,基于RAG方案构专属私有知识库

  • 关于RAG
    • 工作原理
    • 实现方案
  • 一、什么是MaxKb?
  • 二、MaxKb的核心功能
  • 三、MaxKb的安装与使用
  • 四、MaxKb的适用场景
  • 五、安装
    • 方案、 docker版
      • Docker Desktop安装配置
      • MaxKb安装和配置
    • 总结和问题

在这里插入图片描述

MaxKB 是一款基于 LLM 大语言模型的知识库问答系统。MaxKB = Max Knowledge Base,旨在成为企业的最强大脑。

  • 开箱即用:支持直接上传文档、自动爬取在线文档,支持文本自动拆分、向量化,智能问答交互体验好;

  • 无缝嵌入:支持零编码快速嵌入到第三方业务系统;

  • 多模型支持:支持对接主流的大模型,包括 Ollama 本地私有大模型(如 Llama 2、Llama 3、qwen)、通义千问、OpenAI、Azure OpenAI、Kimi、智谱 AI、讯飞星火和百度千帆大模型等。

关于RAG

简介
检索增强生成(Retrieval-Augmented Generation,RAG)是一种结合了信息检索和语言模型的技术,它通过从大规模的知识库中检索相关信息,并利用这些信息来指导语言模型生成更准确和深入的答案。这种方法在2020年由Meta AI研究人员提出,旨在解决大型语言模型(LLM)在信息滞后、模型幻觉、私有数据匮乏和内容不可追溯等问题。

在日常工作和学习中,我们时常会面对大量的PDF、Word、Excel等文档,需要从中查找特定的信息或内容。然而,传统的Ctrl+F搜索方式在面对海量文档或复杂格式时,往往效率低下,令人头疼。如果使用MaxKb 工具,它将彻底改变你处理文档的方式。

工作原理

在这里插入图片描述
在这里插入图片描述

RAG 的主要流程主要包含以下 2 个阶段:

  1. 数据准备阶段: 管理员将内部私有数据向量化后入库的过程,向量化是一个将文本数据转化为向量矩阵的过程,该过程会直接影响到后续检索的效果;入库即将向量数据构建索引,并存储到向量数据库的过程。
  2. 用户应用阶段: 根据用户的 Prompt 提示词,通过检索召回与 Prompt 提示词相关联的知识,并融入到原 Prompt 提示词中,作为大模型的输入 Prompt 提示词,通用大模型因此生成相应的输出。

从上面 RAG 方案我们可以看出,通过与通用大模型相结合,我们可搭建团队私有的内部本地知识库,并能有效的解决通用大模型存在的知识局限性、幻觉问题和隐私数据安全等问题。

实现方案

目前市面上已经有多个开源 RAG 框架,这里将选择MaxKb框架(16.8K ☆ ,https://github.com/1Panel-dev/MaxKB)与大家一起来部署我们自己或者团队内部的本地知识库。整个部署过程将涉及以下几个方面:

  1. 环境准备: MaxKb框架推荐使用 Docker 部署,因此我们需要提前把 Docker 安装和配置好
  2. 大模型准备: 老牛同学继续使用Qwen2-7B大模型,大家可以根据自己实际情况选择,无特殊要求
  3. RAG 部署和使用: 即 MaxKb安装和配置,并最终使用我们大家的 RAG 系统

一、什么是MaxKb?

官网https://github.com/1Panel-dev/MaxKB
MaxKb是一个AI聊天系统,它允许用户构建自己的私人ChatGPT。与依赖云服务的AI工具不同,MaxKb支持本地开源和商用闭源的大语言模型(LLM),用户可以根据自己的需求和预算选择合适的模型。
在这里插入图片描述

二、MaxKb的核心功能

  • 文档智能聊天:只需导入文档,MaxKb就能自动进行上下文分析和内容整理,用户可以通过对话的方式快速提取关键信息。
  • 自定义AI代理:用户可以为每个工作区创建不同的AI代理,实现高度的定制化。例如,可以创建一个专门处理Python代码的AI代理,另一个则专门用于处理PDF文档。
  • 多模式支持:无论是免费的开源模型还是付费的商用模型,MaxKb都能兼容,为用户提供极大的灵活性。
  • 广泛的文档支持:从PDF、TXT到Word、Excel,几乎所有常见的文档格式都支持。
  • 嵌入式聊天小部件:用户可以将MaxKb嵌入到自己的网站中,为网站用户提供自动化的智能客服服务。
  • 团队协作支持:通过Docker容器,多个用户可以同时使用MaxKb,非常适合团队开发或公司内部使用。
  • 丰富的API接口:开发者可以轻松集成MaxKb到现有的应用中,实现更多定制化功能。

三、MaxKb的安装与使用

安装AnythingLLM非常简单,官方文档详细明了,按照步骤操作即可。对于开发者来说,一条命令就能完成Docker部署,几分钟就能跑起来一个完整的私人ChatGPT系统。对于不太懂技术的小伙伴来说,也有详细的教程帮助上手。

使用上,用户只需通过拖拽的方式将文档放入工作区,然后就可以开始与文档“聊天”了。这个过程非常自然,就像与人对话一样,用户可以直接让AI分析提取重要内容,无需再翻阅大量文档或使用关键词搜索。

四、MaxKb的适用场景

  • 个人学习助手:对于学生或知识工作者来说,MaxKb是强大的学习助手,可以帮助他们快速获取书籍、论文等学习资料中的信息。

  • 企业文档管理:企业内部的文档种类繁多,通过MaxKb的工作区机制,企业可以分类管理文档,提升整体工作效率。

  • 开发者定制应用:开发者可以利用MaxKb的API集成到现有系统中,打造符合自己需求的AI应用。

  • 网站智能客服:对于需要客服支持的网站来说,可以将MaxKb嵌入网站中,为用户提供快速解答。

五、安装

采用 MaxKb与Ollama 结合使用的方式,快速搭建本地AI

接下来仅讲解一下如何安装 AnythiMaxKbgLLM 以及配置

安装并配置MaxKb
在这里插入图片描述

方案、 docker版

环境准备
Windows 打开虚拟化功能(Hyper-V 和 WSL)

友情提示: 这里用的是 Windows 操作系统,因此下面是 Windows 的配置方式。

安装 Docker 需要用到虚拟化,因此需要 Windows 系统打开Hyper-V和WSL 子系统功能。如果是 Windows 11 家庭版,默认并没有安装Hyper-V功能,可以通过以下方式进行安装:
在这里插入图片描述
【第一步(家庭版):安装 Hyper-V 依赖包】

  1. 新建一个 txt 临时文本,并复制以下代码并保存,之后把该临时文件重命名为Hyper-V.bat​
  2. 右键以管理员方式运行Hyper-V.bat​,本代码自动安装相关包,完成之后输入Y​重启电脑后即可
pushd "%~dp0"
dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt
for /f %%i in ('findstr /i . hyper-v.txt 2^>nul') do dism /online /norestart /add-package:"%SystemRoot%\servicing\Packages\%%i"
del hyper-v.txt
Dism /online /enable-feature /featurename:Microsoft-Hyper-V-All /LimitAccess /ALL

【第二步:开启虚拟化功能】

首先,打开 Windows 功能(即:控制面板):
在这里插入图片描述
然后,勾选以下 3 个选项(Hyper-V、适用于 Linux 的 Windows 子系统和虚拟机平台),打开虚拟化功能:
在这里插入图片描述
打开虚拟化功能
点击确定之后重启电脑即可!‍‍

Docker Desktop安装配置

这里之前文章有介绍,可参考,这里不再赘述‍‍
在这里插入图片描述

MaxKb安装和配置

方式一: 本地docker部署
接下来,开始安装和部署MaxKb框架,包含以下 3 步:

docker run -d --name=maxkb --restart=always -p 3002:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages cr2.fit2cloud.com/1panel/maxkb# username: admin
# pass: MaxKB@123..
  1. 启动MaxKb镜像
    Windows 系统: AnythingLLM 镜像挂载和启动命令(因为命令有多行,需要通过PowerShell执行):

在这里插入图片描述

  1. 拉取镜像完成后,在docker中检查如下
    在这里插入图片描述

  2. 为避免电脑重启后创建的知识库没保存, 删除自动创建部署的maxkb,如下操作
    在这里插入图片描述
    关闭后操作页面如下
    在这里插入图片描述
    找到PGDATA 路径
    在这里插入图片描述
    然后返回,点击删除
    在这里插入图片描述

  3. 从images中再次创建容器

在这里插入图片描述

第一个端口5432 应该是postgesql的端口 可以不配置

在这里插入图片描述

/var/lib/postgresql/data

在这里插入图片描述

  1. 启动完成,通过浏览器打开AnythingLLM界面:http://localhost:3002
    登录后, 创建知识库, 账号密码见上文
    在这里插入图片描述
    方案二:1Panel 应用商店
    你也可以通过 1Panel 应用商店 快速部署 MaxKB + Ollama + Llama 2,30 分钟内即可上线基于本地大模型的知识库问答系统,并嵌入到第三方业务系统中。
    在这里插入图片描述

配置 MaxKb
配置大语言模型
在这里插入图片描述
若保存时提示api域名无效, 改为 http://host.docker.internal:11434
在这里插入图片描述

​最后一步 , 创建应用
在这里插入图片描述

五、MaxKb 导入数据和使用
上一步配置完成之后,无需任何其他配置,就可以和大模型对话聊天了,和通过其他客户端与大模型对话没有区别。接下来,我们需要导入我们内部私有数据,并进行验证。

5.1 导入内部数据
我们在电脑本地新建一个 txt 文件,文件名为:为什么个人、团队等均有必要部署私有化的RAG知识库系统.txt​,文件内容就是本文的开头内容:

自ChatGPT发布以来,大型语言模型(Large Language Model,LLM,大模型)得到了飞速发展,它在解决复杂任务、增强自然语言理解和生成类人文本等方面的能力让人惊叹,几乎各行各业均可从中获益。然而,在一些垂直领域,这些开源或闭源的通用的基础大模型也暴露了一些问题,主要有以下3个方面:1. **知识的局限性:** 大模型的知识源于训练数据,目前主流大模型(如:通义千问、文心一言等)的训练数据基本来源于网络公开的数据。因此,非公开的、离线的、实时的数据大模型是无法获取到(如:团队内部实时业务数据、私有的文档资料等),这些数据相关的知识也就无从具备。
2. **幻觉问题:** 大模型生成人类文本底层原理是基于概率(目前还无法证明大模型有意识),所以它有时候会**一本正经地胡说八道**,特别是在不具备某方面的知识情况下。当我们也因缺乏这方面知识而咨询大模型时,大模型的幻觉问题会各我们造成很多困扰,因为我们也无法区分其输出的正确性。
3. **数据的安全性:** 对于个人、创新团队、企业来说,**数据安全**至关重要,老牛同学相信没有谁会愿意承担数据泄露的风险,把自己内部私有数据上传到第三方平台进行模型训练。这是一个矛盾:我们既要借助通用大模型能力,又要保障数据的安全性!为了解决以上3个大模型通用问题,**检索增强生成**(Retrieval-Augmented Generation,**RAG**)方案就应运而生了!

首先,点击RAG-ClassmateWX工作空间右边的上传图标,准备上传本 txt 文件:


准备上传文件;然后,点击 txt 文件并上传,并点击Move to workspace导入到工作空间:

5.2 内部数据使用和验证

总结和问题

和之前的大模型部署和应用过程相比,基于 MaxKb 的 RAG 实现整个部署过程比较繁琐,包括环境准备、Docker 安装和配置、MaxKb 配置等。然而,MaxKb 的使用过程却相对比较简单,只需要上传数据文件,MaxKb 框架屏蔽了中间的数据提取分割、向量化处理、向量索引和入库、检索召回和重组 Prompt 提示词等过程。

同时,通过构建本地知识库,做了一个简单的测试验证,测试结果表明,在使用 RAG 的情况下,大模型的回答结果更加有效、更符合我们期望,同时具备了一定的创造性!

注意事项

资源要求:运行大型语言模型需要一定的内存或显存。请确保您的计算机满足Ollama和所选模型的资源要求。

网络问题:在下载模型时,可能会遇到网络问题导致下载速度缓慢或失败。此时可以尝试重启电脑或重启Ollama服务来解决问题。

模型选择:根据自己的需求和预算选择合适的模型。免费的开源模型可能适合个人学习或小型项目,而付费的商用模型则可能提供更高的性能和准确性。

通过以上步骤,您可以将MaxKb 与Ollama成功结合,并利用这一强大的组合进行智能对话和文档处理。无论是个人学习还是企业团队协作,这一解决方案都将为您提供极大的便利和效率提升。

相关文章:

[开源]MaxKb+Ollama 构建RAG私有化知识库

MaxKbOllama,基于RAG方案构专属私有知识库 关于RAG工作原理实现方案 一、什么是MaxKb?二、MaxKb的核心功能三、MaxKb的安装与使用四、MaxKb的适用场景五、安装方案、 docker版Docker Desktop安装配置MaxKb安装和配置 总结和问题 MaxKB 是一款基于 LLM 大…...

迅为RK3568开发板篇OpenHarmony实操HDF驱动配置LED-LED测试

将编译好的镜像全部进行烧写,镜像在源码根目录 out/rk3568/packages/phone/images/目录下。 烧写完成之后,在调试串口查看打印日志,如下图所示: 然后打开 hdc 工具,运行测试程序,输入“led_test 1”&…...

将Mac上Python程序的虚拟环境搬到Windows

1. 导出Mac上Python虚拟环境的依赖 cd py && source venv/bin/activate && pip freeze > requirements.txt 2. 在Windows上创建一个新的虚拟环境 python -m venv venv 3. 激活虚拟环境 venv\Scripts\activate 4. 安装依赖 pip install -r requiremen…...

大语言模型评价 怎么实现去偏见处理

大语言模型评价 怎么实现去偏见处理 在训练大语言模型(LLMs)时,去偏处理对于避免模型学习到带有偏见的模式至关重要,以下从数据处理、模型训练、评估监测三个阶段介绍具体实现方法,并结合招聘场景进行举例说明: 数据处理阶段 数据清洗:仔细审查并剔除包含明显偏见的训练…...

3.React 组件化开发

react:版本 18.2.0node: 版本18.19.1脚手架:版本 5.0.1 一、类组件 (一) 一个干净的脚手架 【1】使用已经被废弃的 CRA (create-react-app) create-react-app 已经被废弃,且目前使用会报错,官方已经不推荐使用&…...

19vue3实战-----菜单子树的展示

19vue3实战-----菜单子树的展示 1.实现目标2.实现思路3.实现步骤3.1新建config配置文件3.2封装组件3.3使用组件 1.实现目标 如上,以上效果的难点是“在表格里面实现树形结构”。可以用element-plus框架中的table作为辅助: 可以自己查看文档了解怎么使用。 2.实现思路 上面的…...

【AI大模型】Ollama部署本地大模型DeepSeek-R1,交互界面Open-WebUI,RagFlow构建私有知识库

文章目录 DeepSeek介绍公司背景核心技术产品与服务应用场景优势与特点访问与体验各个DeepSeek-R系列模型的硬件需求和适用场景 Ollama主要特点优势应用场景安装和使用配置环境变量总结 安装open-webui下载和安装docker desktop配置镜像源安装open-webui运行和使用 RagFlow介绍主…...

JDK 17 和 JDK 21 在垃圾回收器(GC)上有什么优化?如何调整 GC 算法以提升应用性能?

JDK 17 和 JDK 21 在垃圾回收器(GC)上有什么优化?如何调整 GC 算法以提升应用性能? 本文将从 JDK 17 与 JDK 21 的垃圾回收改进出发,结合代码示例解析优化方案,并提供实际项目中的调优策略,帮助…...

CNN-GRU卷积神经网络门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据)

代码地址:CNN-GRU卷积神经网络门控循环单元多变量多步预测,光伏功率预测(Matlab完整源码和数据) CNN-GRU卷积神经网络门控循环单元多变量多步预测,光伏功率预测 一、引言 1.1、研究背景和意义 随着全球能源危机和环境问题的日…...

kotlin中expect和actual关键字修饰的函数作用

在 Kotlin 多平台编程中,expect 和 actual 关键字用于定义跨平台的抽象和具体实现。这种机制允许开发者声明一个平台无关的接口或函数签名(使用 expect),然后在每个目标平台上提供具体的实现(使用 actual)。…...

鸿蒙音视频播放器:libwlmedia

libwlmedia 跨平台播放器wlmedia现在已经支持了鸿蒙(Harmony)平台了,SDK插件地址:libwlmedia 一、接入SDK 1.1 导入SDK ohpm i ywl5320/libwlmedia1.2 添加权限(可选) 如果需要播放网络视频,需要添加网络权限 #m…...

【devops】 Git仓库如何fork一个私有仓库到自己的私有仓库 | git fork 私有仓库

一、场景说明 场景: 比如我们Codeup的私有仓库下载代码 放入我们的Github私有仓库 且保持2个仓库是可以实现fork的状态,即:Github会可以更新到Codeup的最新代码 二、解决方案 1、先从Codeup下载私有仓库代码 下载代码使用 git clone 命令…...

CEF132编译指南 MacOS 篇 - 构建 CEF (六)

1. 引言 经过前面一系列的精心准备,我们已经完成了所有必要的环境配置和源码获取工作。本篇作为 CEF132 编译指南系列的第六篇,将详细介绍如何在 macOS 系统上构建 CEF132。通过配置正确的编译命令和参数,我们将完成 CEF 的构建工作&#xf…...

mysql大数据量分页查询

一、什么是‌MySQL大数据量分页查? MySQL大数据量分页查‌是指在使用MySQL数据库时,将大量数据分成多个较小的部分进行显示,以提高查询效率和用户体验。分页查询通常用于网页或应用程序中,以便用户能够逐步浏览结果集。 二、为什…...

计算机毕业设计SpringBoot校园二手交易小程序 校园二手交易平台(websocket消息推送+云存储+双端+数据统计)(源码+文档+运行视频+讲解视频)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

尚硅谷爬虫note003

一、函数 1. 函数的定义 def 函数名(): 代码 2.函数的调用 函数名() 3. 定义参数(不调用函数不执行) def sum(a,b) #形参 c a b print(c&…...

【逆向工程】破解unity的安卓apk包

先了解一下普通apk包的逆向方法(无加密或加壳) 开发环境: 操作系统:windows 解apk包 下载工具:apktool【Install Guide | Apktool】按照文档说的操作就行,先安装java运行时环境【我安装的是jre-8u441-wind…...

稠密架构和稀疏架构

稠密架构和稀疏架构 flyfish 稠密架构 参数使用方面:稠密架构中的大部分参数在每次计算时都会被使用。也就是说,对于输入的每一个样本,模型的所有或大部分参数都会参与到计算过程中。计算特点:计算密集,需要对大量的…...

LeetCode --- 436周赛

题目列表 3446. 按对角线进行矩阵排序 3447. 将元素分配给有约束条件的组 3448. 统计可以被最后一个数位整除的子字符串数目 3449. 最大化游戏分数的最小值 一、按对角线进行矩阵排序 直接模拟,遍历每一个斜对角线,获取斜对角线上的数字,排…...

用easyExcel如何实现?

要使提供的 ExcelModelListener 类来解析 Excel 文件并实现批量存储数据库的功能,需要结合 EasyExcel 库来读取 Excel 数据。具体来说,可以使用 EasyExcel.read() 方法来读取 Excel 文件,并指定 ExcelModelListener 作为事件监听器。 下面是…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...

Python Einops库:深度学习中的张量操作革命

Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

HTML前端开发:JavaScript 获取元素方法详解

作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者:来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布,Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明,Elastic 作为 …...