【Linux】详谈 基础I/O
目录
一、理解文件
狭义的理解:
广义理解:
文件操作的归类认知
系统角度
二、系统文件I/O
2.1 标志位的传递
系统级接口open
编辑
open返回值
写入文件
读文件
三、文件描述符
3.1(0 & 1 & 2)
3.2 文件描述符的分配规则
3.3 重定向
3.4 dup2系统调用
标准错误
一、理解文件
文件类型:
- 普通文件:包含用户数据,如文本文件、二进制可执行文件、图像文件、音频文件等。文本文件可以用文本编辑器打开查看和编辑,二进制文件则包含了机器可执行的指令或特定格式的数据。
- 目录文件:用于组织和管理其他文件和目录,类似于 Windows 系统中的文件夹。它包含了指向其他文件和目录的索引信息。
- 设备文件:在Linux中,硬件设备也被视为文件,分为字符设备文件和块设备文件。字符设备文件通常用于像串口、终端这样以字符流方式进行数据传输的设备;块设备文件用于如硬盘、U盘等以块为单位进行数据读写的设备。
- 链接文件:类似于 Windows系统中的快捷方式,分为硬链接和软链接(符号链接)。硬链接是同一个文件的多个名称,它们共享相同的 inode号;软链接则是指向另一个文件的特殊文件,有自己独立的 inode 号。
- 管道文件:主要用于进程间通信,允许两个或多个进程之间进行数据的传递和共享。
- 套接字文件:用于网络通信或本地进程间通信,是网络编程和一些进程间通信机制的重要组成部分。
狭义的理解:
• 文件在磁盘里
• 磁盘是永久性存储介质,因此文件在磁盘上的存储是永久性的
• 磁盘是外设(即是输出设备也是输入设备)
• 磁盘上的文件 本质是对文件的所有操作,都是对外设的输入和输出 简称 IO
广义理解:
Linux 下一切皆文件(键盘、显示器、网卡、磁盘…… 这些都是抽象化的过程)
文件操作的归类认知
• 对于 0KB 的空文件是占用磁盘空间的
• 文件是文件属性(元数据)和文件内容的集合(文件 = 属性(元数据)+ 内容)
• 所有的文件操作本质是文件内容操作和文件属性操作
系统角度
• 对文件的操作本质是进程对文件的操作
• 磁盘的管理者是操作系统
• 文件的读写本质不是通过 C 语言 / C++ 的库函数来操作的(这些库函数只是为用户提供方便),而、是通过文件相关的系统调用接口来实现的
二、系统文件I/O
打开文件的方式不仅仅是fopen,ifstream等流式,语言层的方案,其实系统才是打开文件最底层的方案。不过,在学习系统文件IO之前,先要了解下如何给函数传递标志位,该方法在系统文件IO接口中会使用到:
2.1 标志位的传递
系统级接口open
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);
pathname: 要打开或创建的⽬标⽂件
flags: 打开⽂件时,可以传⼊多个参数选项,⽤下⾯的⼀个或者多个常量进⾏“或”运算,构成
flags。
参数:O_RDONLY: 只读打开O_WRONLY: 只写打开O_RDWR : 读,写打开这三个常量,必须指定⼀个且只能指定⼀个O_CREAT : 若⽂件不存在,则创建它。需要使⽤mode选项,来指明新⽂件的访问
权限O_APPEND: 追加写
返回值:成功:新打开的⽂件描述符失败:-1
open返回值
在认识返回值之前,先来认识⼀下两个概念: 系统调⽤ 和 库函数
• 上⾯的 fopen fclose fread fwrite 都是C标准库当中的函数,我们称之为库函数(libc)。
• ⽽ open close read write lseek 都属于系统提供的接⼝,称之为系统调⽤接⼝
系统调⽤接⼝和库函数的关系,⼀⽬了然。
所以,可以认为, f# 系列的函数,都是对系统调⽤的封装,⽅便⼆次开发。
写入文件
清空并写入
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>int main()
{umask(0);int fd=open("log.txt",O_CREAT | O_WRONLY | O_TRUNC,0666);if(fd<0){perror("open");return 1;}printf("fd: %d\n",fd);const char* msg="hello hhh";int cnt=1;while(cnt--){write(fd,msg,strlen(msg));}close(fd);return 0;
}
追加并写入
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <unistd.h>int main()
{umask(0);int fd=open("log.txt",O_CREAT | O_WRONLY | O_TRUNC ,0666);if(fd<0){perror("open");return 1;}printf("fd: %d\n",fd);const char* msg="hello bbbb";int cnt=1;while(cnt--){write(fd,msg,strlen(msg));}close(fd);return 0;
}
注意上面的加入函数umask(0);就可以自己规范权限。
读文件
int main()
{int fd = open("myfile", O_RDONLY);if(fd < 0){perror("open");return 1;} const char *msg = "hello bit!\n";char buf[1024];while(1)
{ssize_t s = read(fd, buf, strlen(msg));//类⽐writeif(s > 0){printf("%s", buf);}else{break;}} close(fd);return 0;
}
这里的接口都是系统调用,而上面的c语言的文件操作都是语言层面上的调用。其实语言层里面的调用里面都封装着系统级别的调用。
三、文件描述符
文件描述符是一个非负整数,它是 Linux 内核为了管理文件操作而给每个打开的文件或其他 I/O 资源(如管道、套接字等)分配的一个标识符。可以将其理解为一个指向内核中代表打开文件的数据结构的索引,通过这个索引,程序能够方便地对相应的文件或资源进行各种读写等操作。
在操作系统层面接口层面,系统只认文件描述符(fd)。所有根据前面所讲,语言层面肯定封装了文件fd。
3.1(0 & 1 & 2)
• Linux进程默认情况下会有3个缺省打开的文件描述符,分别是标准输入0, 标准输出1, 标准错误2.
• 0,1,2对应的物理设备一般是:键盘,显示器,显示器
所以输⼊输出还可以采⽤如下⽅式:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
int main()
{char buf[1024];ssize_t s = read(0, buf, sizeof(buf));if(s > 0){buf[s] = 0;write(1, buf, strlen(buf));write(2, buf, strlen(buf));}return 0;
}
而现在知道,文件描述符就是从0开始的小整数。当我们打开文件时,操作系统在内存中要创建相应的数据结构来描述目标文件。于是就有了file结构体。表示一个已经打开的文件对象。而进程执行open系统调用,所以必须让进程和文件关联起来。每个进程都有一个指针*files, 指向一张表files_struct,该表最重要的部分就是包含一个指针数组,每个元素都是一个指向打开文件的指针!所以,本质上,文件描述符就是该数组的下标。所以,只要拿着文件描述符,就可以找到对应的文件。
对于以上原理结论我们可通过内核源码验证:
首先要找到task_struct 结构体在内核中为位置,地址为: /usr/src/kernels/3.10.0-1160.71.1.el7.x86_64/include/linux/sched.h (3.10.0-1160.71.1.el7.x86_64是内核版本,可使用 uname -a 自行查看服务器配置, 因为这个文件夹只有一个,所以也不用刻意去分辨,内核版本其实也随意)
3.2 文件描述符的分配规则
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int main()
{int fd = open("myfile", O_RDONLY);if(fd < 0){perror("open");return 1;}printf("fd: %d\n", fd);close(fd);return 0;
}
输出发现是fd: 3
关闭0或者2,在看
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int main()
{close(0);//close(2);int fd = open("myfile", O_RDONLY);if(fd < 0){perror("open");return 1;}printf("fd: %d\n", fd);close(fd);return 0;
}
发现是结果是: fd: 0 或者 fd 2 ,可⻅,文件描述符的分配规则:在files_struct数组当中,找到当前没有被使⽤的最小的⼀个下标,作为新的文件描述符。
3.3 重定向
那如果关闭1呢?看代码:
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>
int main()
{close(1);int fd = open("myfile", O_WRONLY|O_CREAT, 00644);if(fd < 0){perror("open");return 1;}printf("fd: %d\n", fd);fflush(stdout);close(fd);exit(0);
}
此时,我们发现,本来应该输出到显⽰器上的内容,输出到了⽂件 myfile 当中,其中,fd=1。这种现象叫做输出重定向。常见的重定向有: > ,>> ,<
重定向的本质
3.4 dup2系统调用
int main() {// 打开文件,如果文件不存在则创建,同时以读写模式打开int fd = open("./log", O_CREAT | O_RDWR);if (fd < 0) {perror("open");return 1;}// 关闭标准输出文件描述符close(1);// 将文件描述符 fd 复制到标准输出文件描述符(1)dup2(fd, 1);for (;;) {char buf[1024] = {0};// 从标准输入读取数据到缓冲区ssize_t read_size = read(0, buf, sizeof(buf) - 1);if (read_size < 0) {perror("read");break;}// 输出读取到的内容printf("%s", buf);// 刷新标准输出缓冲区fflush(stdout);}return 0;
}
标准错误
向标准输出和标准错误里打信息
标准输出和标准错误都是显示器文件,想把标准输出和标准错误的信息重定向一个文件。这样是不行的。可以发现两者在两个文件中
用下面这个指令进行重定向,重定向到了两个文件
用下面这个指令可以把两者重定向到一个文件
存在一个标准错误,可以通过重定向能力把常规消息和错误消息进行分离。以方便后续用户进行操作好区分。
本篇完,下篇见!
相关文章:

【Linux】详谈 基础I/O
目录 一、理解文件 狭义的理解: 广义理解: 文件操作的归类认知 系统角度 二、系统文件I/O 2.1 标志位的传递 系统级接口open 编辑 open返回值 写入文件 读文件 三、文件描述符 3.1(0 & 1 & 2) 3.2 文件描…...

爬虫案例七Python协程爬取视频
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Python协程爬取视频 前言 提示:这里可以添加本文要记录的大概内容: 爬虫案例七协程爬取视频 提示:以下是本篇文章正文…...

[20250304] 关于 RISC-V芯片 的介绍
[20250304] 关于 RISC-V芯片 的介绍 1. 调研报告 一、RISC-V 芯片结构分析 RISC-V 芯片基于开源指令集架构(ISA),其核心优势在于模块化设计与高度灵活性。 指令集架构 基础指令集:包含 RV32I(32 位)、R…...

一学就会:A*算法详细介绍(Python)
📢本篇文章是博主人工智能学习以及算法研究时,用于个人学习、研究或者欣赏使用,并基于博主对相关等领域的一些理解而记录的学习摘录和笔记,若有不当和侵权之处,指出后将会立即改正,还望谅解。文章分类在&am…...

Hadoop、Hive、Spark的关系
Part1:Hadoop、Hive、Spark关系概览 1、MapReduce on Hadoop 和spark都是数据计算框架,一般认为spark的速度比MR快2-3倍。 2、mapreduce是数据计算的过程,map将一个任务分成多个小任务,reduce的部分将结果汇总之后返回。 3、HIv…...

Excel·VBA江西省预算一体化工资表一键处理
每月制作工资表导出为Excel后都需要调整格式,删除0数据的列、对工资表项目进行排序、打印设置等等,有些单位还分有“行政”、“事业”2个工资表就需要操作2次。显然,这种重复操作的问题,可以使用VBA代码解决 目录 代码使用说明1&a…...

23种设计模式简介
一、创建型(5种) 1.工厂方法 总店定义制作流程,分店各自实现特色披萨(北京店-烤鸭披萨,上海店-蟹粉披萨) 2.抽象工厂 套餐工厂(家庭装含大披萨薯条,情侣装含双拼披萨红酒&#…...

python fire 库与 sys.argv 处理命令行参数
fire库 Python Fire 由Google开发,它使得命令行接口(CLI)的创建变得容易。使用Python Fire,可以将Python对象(如类、函数或字典)转换为可以从终端运行的命令行工具。这能够以一种简单而直观的方式与你的Py…...

PDF处理控件Aspose.PDF,如何实现企业级PDF处理
PDF处理为何成为开发者的“隐形雷区”? “手动调整200页PDF目录耗时3天,扫描件文字识别错误导致数据混乱,跨平台渲染格式崩坏引发客户投诉……” 作为开发者,你是否也在为PDF处理的复杂细节消耗大量精力?Aspose.PDF凭…...

Spring(1)——mvc概念,部分常用注解
1、什么是Spring Web MVC? Spring MVC 是一种基于 Java 的实现了 MVC(Model-View-Controller,模型 - 视图 - 控制器)设计模式的 Web 应用框架,它是 Spring 框架的一个重要组成部分,用于构建 Web 应用程序。…...

C语言(23)
字符串函数 11.strstr函数 1.1函数介绍: 头文件:string.h char *strstr ( const char * str1,const char *str2); 作用:在一个字符串(str1)中寻找另外一个字符串(str2)是否出现过 如果找到…...

Immich自托管服务的本地化部署与随时随地安全便捷在线访问数据
文章目录 前言1.关于Immich2.安装Docker3.本地部署Immich4.Immich体验5.安装cpolar内网穿透6.创建远程链接公网地址7.使用固定公网地址远程访问 前言 小伙伴们,你们好呀!今天要给大家揭秘一个超炫的技能——如何把自家电脑变成私人云相册,并…...

基于SpringBoot的在线付费问答系统设计与实现(源码+SQL脚本+LW+部署讲解等)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...

【Linux】信号处理以及补充知识
目录 一、信号被处理的时机: 1、理解: 2、内核态与用户态: 1、概念: 2、重谈地址空间: 3、处理时机: 补充知识: 1、sigaction: 2、函数重入: 3、volatile&…...

pandas——to_datatime用法
Pandas中pd.to_datetime的用法及示例 pd.to_datetime 是 Pandas 库中用于将字符串、整数或列表转换为日期时间(datetime)对象的核心函数。它在处理时间序列数据时至关重要,能够灵活解析多种日期格式并统一为标准时间类型。以下是其核心用法及…...

《DataWorks 深度洞察:量子机器学习重塑深度学习架构,决胜复杂数据战场》
在数字化浪潮汹涌澎湃的当下,大数据已然成为推动各行业发展的核心动力。身处这一时代洪流,企业对数据的处理与分析能力,直接关乎其竞争力的高低。阿里巴巴的DataWorks作为大数据领域的扛鼎之作,凭借强大的数据处理与分析能力&…...

Java 大视界 -- 基于 Java 的大数据实时数据处理框架性能评测与选型建议(121)
💖亲爱的朋友们,热烈欢迎来到 青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也…...

多线程-JUC
简介 juc,java.util.concurrent包的简称,java1.5时引入。juc中提供了一系列的工具,可以更好地支持高并发任务 juc中提供的工具 可重入锁 ReentrantLock 可重入锁:ReentrantLock,可重入是指当一个线程获取到锁之后&…...

DeepSeek:中国AGI先锋,用技术重塑通用人工智能的未来
在ChatGPT掀起全球大模型热潮的背景下,中国AI领域涌现出一批极具创新力的技术公司,深度求索(DeepSeek)便是其中的典型代表。这家以“探索未知、拓展智能边界”为使命的AI企业,凭借长文本理解、逻辑推理与多模态技术的…...

Vue 框架深度解析:源码分析与实现原理详解
文章目录 一、Vue 核心架构设计1.1 整体架构流程图1.2 模块职责划分 二、响应式系统源码解析2.1 核心类关系图2.2 核心源码分析2.2.1 数据劫持实现2.2.2 依赖收集过程 三、虚拟DOM与Diff算法实现3.1 Diff算法流程图3.2 核心Diff源码 四、模板编译全流程剖析4.1 编译流程图4.2 编…...

Python爬虫获取淘宝快递费接口的详细指南
在电商运营中,快递费用的透明化和精准计算对于提升用户体验、优化物流成本以及增强市场竞争力至关重要。淘宝提供的 item_fee 接口能够帮助开发者快速获取商品的快递费用信息。本文将详细介绍如何使用 Python 爬虫技术结合 item_fee 接口,实现高效的数据…...

基于BMO磁性细菌优化的WSN网络最优节点部署算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 无线传感器网络(Wireless Sensor Network, WSN)由大量分布式传感器节点组成,用于监测物理或环境状况。节点部署是 WSN 的关键问…...

Android Activity的启动器ActivityStarter入口
Activity启动器入口 Android的Activity的启动入口是在ActivityStarter类的execute(),在该方法里面继续调用executeRequest(Request request) ,相应的参数都设置在方法参数request中。代码挺长,分段现在看下它的实现,分段一&#x…...

Python深度学习算法介绍
一、引言 深度学习是机器学习的一个重要分支,它通过构建多层神经网络结构,自动从数据中学习特征表示,从而实现对复杂模式的识别和预测。Python作为一门强大的编程语言,凭借其简洁易读的语法和丰富的库支持,成为深度学…...

关于sqlalchemy的使用
关于sqlalchemy的使用 说明一、sqlachemy总体使用思路二、安装与创建库、连结库三、创建表、增加数据四、查询记录五、更新或删除六、关联表定义七、一对多关联查询八、映射类定义与添加记录 说明 本教程所需软件及库python3.10、sqlalchemy安装与创建库、连结库创建表、增加数…...

利用LLMs准确预测旋转机械(如轴承)的剩余使用寿命(RUL)
研究背景 研究问题:如何准确预测旋转机械(如轴承)的剩余使用寿命(RUL),这对于设备可靠性和减少工业系统中的意外故障至关重要。研究难点:该问题的研究难点包括:训练和测试阶段数据分布不一致、长期RUL预测的泛化能力有限。相关工作:现有工作主要包括基于模型的方法、数…...

深度学习 PyTorch 中 18 种数据增强策略与实现
深度学习pytorch之简单方法自定义9类卷积即插即用 数据增强通过对训练数据进行多种变换,增加数据的多样性,它帮助我们提高模型的鲁棒性,并减少过拟合的风险。PyTorch 提供torchvision.transforms 模块丰富的数据增强操作,我们可以…...

视觉图像处理
在MATLAB中进行视觉图像处理仿真通常涉及图像增强、滤波、分割、特征提取等操作。以下是一个分步指南和示例代码,帮助您快速入门: 1. MATLAB图像处理基础步骤 1.1 读取和显示图像 % 读取图像(替换为实际文件路径) img = imread(lena.jpg); % 显示原图 figure; subplot(2…...

深度学习与普通神经网络有何区别?
深度学习与普通神经网络的主要区别体现在以下几个方面: 一、结构复杂度 普通神经网络:通常指浅层结构,层数较少,一般为2-3层,包括输入层、一个或多个隐藏层、输出层。深度学习:强调通过5层以上的深度架构…...

Vue3、vue学习笔记
<!-- Vue3 --> 1、Vue项目搭建 npm init vuelatest cd 文件目录 npm i npm run dev // npm run _ 这个在package.json中查看scripts /* vue_study\.vscode可删 // vue_study\src\components也可删除(基本语法,不使用组件) */ // vue_study\.vscode\lau…...