当前位置: 首页 > news >正文

2025最新群智能优化算法:云漂移优化(Cloud Drift Optimization,CDO)算法求解23个经典函数测试集,MATLAB

一、云漂移优化算法

云漂移优化(Cloud Drift Optimization,CDO)算法是2025年提出的一种受自然现象启发的元启发式算法,它模拟云在大气中漂移的动态行为来解决复杂的优化问题。云在大气中受到各种大气力的影响,其粒子的运动具有一定的随机性和规律性,CDO算法正是基于这种特性,通过模拟云粒子的运动来在优化问题的解空间中进行搜索。
以下是云漂移优化算法(Cloud Drift Optimization, CDO)的详细介绍:

算法操作步骤

  1. 初始化:首先在解空间中随机初始化一群“云粒子”,每个粒子代表一个潜在的解。
  2. 适应度评估:计算每个粒子的适应度值,以评估其作为解的质量。
  3. 更新最优解:根据粒子的适应度值,更新群体的最优解(全局最优)和每个粒子的个体最优解。
  4. 自适应权重调整:CDO算法引入了自适应权重调整机制,根据优化过程的进展动态调整权重参数,以平衡探索(exploration)和开发(exploitation)之间的关系。在优化初期,权重较大,粒子在解空间中具有较大的随机性,有利于全局搜索;随着优化的进行,权重逐渐减小,粒子的运动更加趋向于当前最优解,有利于局部搜索。
  5. 位置更新:根据粒子的速度和方向,结合权重参数,更新粒子的位置,模拟云粒子在大气中的漂移运动。粒子的速度更新通常受到个体最优解和全局最优解的引导,同时加入随机因素以保持一定的探索能力。
  6. 循环迭代:重复步骤2至5,直到满足预设的终止条件,如最大迭代次数或适应度精度要求。
  7. 输出结果:最终输出群体的最优解作为优化问题的近似最优解。

算法优势

  • 探索与开发的平衡:通过自适应权重调整机制,CDO算法能够在优化过程中动态地在全局搜索和局部搜索之间切换,避免了过早收敛到局部最优解,提高了寻找全局最优解的能力。
  • 较强的鲁棒性:算法对初始参数的选择不敏感,具有较好的稳定性和适应性,能够在不同类型的优化问题中取得较好的效果。
  • 高效的收敛速度:利用云粒子的群体智慧和协同搜索,CDO算法能够在相对较短的迭代次数内快速收敛到较优解,节省计算资源和时间。
  • 适用范围广:不仅适用于连续空间的优化问题,还可以通过适当的离散化处理应用于离散优化问题。

参考文献:
[1]Mohammad Alibabaei Shahrak.Cloud Drift Optimization (CDO) Algorithm: A Nature-Inspired Metaheuristic,2025.

二、23个函数介绍

在这里插入图片描述
参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、部分代码及结果

clear;
clc;
close all;
warning off all;SearchAgents_no=50;    %Number of search solutions
Max_iteration=500;    %Maximum number of iterationsFunc_name='F1'; % Name of the test function% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_F(Func_name); tic;
[Best_score,Best_pos,cg_curve]=(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); 
tend=toc;% figure('Position',[500 500 901 345])
%Draw search space
subplot(1,2,1);
func_plot(Func_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Func_name,'( x_1 , x_2 )'])%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','m',LineWidth=2.5)
title(Func_name)% title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');axis tight
grid on
box on
legend('')display(['The running time is:', num2str(tend)]);
display(['The best fitness is:', num2str(Best_score)]);
display(['The best position is: ', num2str(Best_pos)]);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码见下方名片

相关文章:

2025最新群智能优化算法:云漂移优化(Cloud Drift Optimization,CDO)算法求解23个经典函数测试集,MATLAB

一、云漂移优化算法 云漂移优化(Cloud Drift Optimization,CDO)算法是2025年提出的一种受自然现象启发的元启发式算法,它模拟云在大气中漂移的动态行为来解决复杂的优化问题。云在大气中受到各种大气力的影响,其粒子的…...

2025年Draw.io最新版本下载安装教程,附详细图文

2025年Draw.io最新版本下载安装教程,附详细图文 大家好,今天给大家介绍一款非常实用的流程图绘制软件——Draw.io。不管你是平时需要设计流程图、绘制思维导图,还是制作架构图,甚至是简单的草图,它都能帮你轻松搞定。…...

记录--洛谷 P1451 求细胞数量

如果想查看完整题目,请前往洛谷 P1451 求细胞数量 P1451 求细胞数量 题目描述 一矩形阵列由数字 0 0 0 到 9 9 9 组成,数字 1 1 1 到 9 9 9 代表细胞,细胞的定义为沿细胞数字上下左右若还是细胞数字则为同一细胞,求给定矩形…...

Android Studio 配置国内镜像源

Android Studio版本号:2022.1.1 Patch 2 1、配置gradle国内镜像,用腾讯云 镜像源地址:https\://mirrors.cloud.tencent.com/gradle 2、配置Android SDK国内镜像 地址:Index of /AndroidSDK/...

做到哪一步才算精通SQL

做到哪一步才算精通SQL-Structured Query Language 数据定义语言 DDL for StructCREATE:用来创建数据库、表、索引等对象ALTER:用来修改已存在的数据库对象DROP:用来删除整个数据库或者数据库中的表TRUNCATE:用来删除表中所有的行…...

Manus演示案例: 英伟达财务估值建模 解锁投资洞察的深度剖析

在当今瞬息万变的金融投资领域,精准剖析企业价值是投资者决胜市场的关键。英伟达(NVIDIA),作为科技行业的耀眼明星,其在人工智能和半导体领域的卓越表现备受瞩目。Manus 凭借专业的财务估值建模能力,深入挖…...

postman接口请求中的 Raw是什么

前言 在现代的网络开发中,API 的使用已经成为数据交换的核心方式之一。然而,在与 API 打交道时,关于如何发送请求体(body)内容类型的问题常常困扰着开发者们,尤其是“raw”和“json”这两个术语之间的区别…...

DeepSeek大语言模型下几个常用术语

昨天刷B站看到复旦赵斌老师说的一句话“科幻电影里在人脑中植入芯片或许在当下无法实现,但当下可以借助AI人工智能实现人类第二脑”(大概是这个意思) 💞更多内容,可关注公众号“ 一名程序媛 ”,我们一起从 …...

ctf-WEB: 关于 GHCTF Message in a Bottle plus 与 Message in a Bottle 的非官方wp解法

Message in a Bottle from bottle import Bottle, request, template, runapp Bottle()# 存储留言的列表 messages [] def handle_message(message):message_items "".join([f"""<div class"message-card"><div class"me…...

测试用例详解

一、通用测试用例八要素   1、用例编号&#xff1b;    2、测试项目&#xff1b;   3、测试标题&#xff1b; 4、重要级别&#xff1b;    5、预置条件&#xff1b;    6、测试输入&#xff1b;    7、操作步骤&#xff1b;    8、预期输出 二、具体分析通…...

c#面试题整理7

1.UDP和TCP的区别 UDP是只要能连上终端就发送&#xff0c;至于终端是否收到&#xff0c;不管。 TCP则是会存在交换&#xff0c;即发送失败或成功&#xff0c;是可知的。 2.进程和线程的区别 双击一个程序的exe文件&#xff0c;程序执行了&#xff0c;这就是一个进程。 这个…...

OpenManus-通过源码方式本地运行OpenManus,含踩坑及处理方案,chrome.exe位置修改

前言&#xff1a;最近 Manus 火得一塌糊涂啊&#xff0c;OpenManus 也一夜之间爆火&#xff0c;那么作为程序员应该来尝尝鲜 1、前期准备 FastGithub&#xff1a;如果有科学上网且能正常访问 github 则不需要下载此软件&#xff0c;此软件是提供国内直接访问 githubGit&#…...

【性能测试】Jmeter下载安装、环境配置-小白使用手册(1)

本篇文章主要包含Jmeter的下载安装、环境配置 添加线程组、结果树、HTTP请求、请求头设置。JSON提取器的使用&#xff0c;用户自定义变量 目录 一&#xff1a;引入 1&#xff1a;软件介绍 2&#xff1a;工作原理 3&#xff1a;安装Jmeter 4&#xff1a;启动方式 &#xf…...

HTML星球大冒险之路线图

第一章&#xff1a;欢迎来到 HTML 星球&#xff01; 1.1 宇宙的基石&#xff1a;HTML 是什么&#xff1f; &#x1f30d; 比喻&#xff1a;HTML 是网页世界的「乐高积木」&#xff0c;用标签搭建一切可见内容&#x1f3af; 目标&#xff1a;理解 HTML 的作用&#xff0c;掌握…...

初识大模型——大语言模型 LLMBook 学习(一)

1. 大模型发展历程 &#x1f539; 1. 早期阶段&#xff08;1950s - 1990s&#xff09;&#xff1a;基于规则和统计的方法 代表技术&#xff1a; 1950s-1960s&#xff1a;规则驱动的语言处理 早期的 NLP 主要依赖 基于规则的系统&#xff0c;如 Noam Chomsky 提出的 生成语法&…...

LabVIEW伺服阀高频振动测试

在伺服阀高频振动测试中&#xff0c;闭环控制系统的实时性与稳定性至关重要。针对用户提出的1kHz控制频率需求及Windows平台兼容性问题&#xff0c;本文重点分析NI PCIe-7842R实时扩展卡的功能与局限性&#xff0c;并提供其他替代方案的综合对比&#xff0c;以帮助用户选择适合…...

AI编程工具-(七)

250309,10这几天都在用通义灵码搞做建模分析。 感想&#xff0c;指令越具体&#xff0c;实现效果越好。 依然是之前的时许数据&#xff0c;这几天分析效果没有提升。 画的几个有意思的图表和效果 主要觉得这图好看&#xff0c;提示词不复杂。 预测效果 预测准确性提升不大聊…...

什么是一致性模型,在实践中如何选择?

一、一致性模型 1、强一致性(Strong Consistency) ①定义:强一致性意味着在分布式系统中的每个读取操作,都能读取到最近写入的数据。也就是说,所有节点都始终保持相同的数据状态。 ②特点:写操作对所有节点立即可见,所有的读取操作在任何节点上都能看到最新的写入。 …...

Python项目-智能家居控制系统的设计与实现

1. 引言 随着物联网技术的快速发展&#xff0c;智能家居系统已经成为现代家庭生活的重要组成部分。本文将详细介绍一个基于Python的智能家居控制系统的设计与实现过程&#xff0c;该系统能够实现对家庭设备的集中管理和智能控制&#xff0c;提升家居生活的便捷性和舒适度。 2…...

RDP连接无法复制粘贴问题的排查与解决指南

RDP连接无法复制粘贴问题的排查与解决指南 问题描述注意事项排查原因检查RDP剪贴板进程是否正常检查组策略设置检查权限和安全设置检查网络连接 解决方式重启rdpclip.exe进程启用RDP剪贴板重定向调整组策略设置检查并调整安全设置更新驱动程序和系统检查网络连接使用其他远程连…...

IDEA与Maven使用-学习记录(持续补充...)

1. 下载与安装 以ideaIU-2021.3.1为例&#xff0c;安装步骤&#xff1a; 以管理员身份启动ideaIU-2021.3.1修改安装路径为&#xff1a;D:\Program Files\JetBrains\IntelliJ IDEA 2021.3.1勾选【创建桌面快捷方式】&#xff08;可选&#xff09;、【打开文件夹作为项目】&…...

Go 语言封装 HTTP 请求的 Curl 工具包

文章目录 Go 语言封装 HTTP 请求的 Curl 工具包&#x1f3d7;️ 工具包结构简介核心结构体定义初始化函数 &#x1f31f; 功能实现1. 设置请求头2. 构建请求3. 发送请求4. 发送 GET 请求5. 发送 POST 请求6. 发送 PUT 请求7. 发送 DELETE 请求8. 读取响应体 &#x1f4a1; 实现…...

RK3568 SD卡调试记录

文章目录 1、环境介绍2、概念理清3、原理图查看4、dts配置5、验证6、SD卡启动6.1、启动优先级6.2、启动流程6.2.1、Maskrom(Boot ROM)启动优先级6.2.2、Pre-loader(SPL)启动优先级 6.3、如何从sd卡启动&#xff1f;6.3.1、制作sd启动卡6.3.2、sd卡启动 7、总结 1、环境介绍 硬…...

高效获取历史行情数据:xtquant的实战应用

高效获取历史行情数据&#xff1a;xtquant的实战应用 &#x1f680;量化软件开通 &#x1f680;量化实战教程 在量化交易领域&#xff0c;历史行情数据是构建和测试交易策略的基础。无论是回测策略的有效性&#xff0c;还是进行市场分析&#xff0c;高质量的历史数据都是不可…...

【python爬虫】酷狗音乐爬取练习

注意&#xff1a;本次爬取的音乐仅有1分钟试听&#xff0c;仅作学习爬虫的原理&#xff0c;完整音乐需要自行下载客户端。 一、 初步分析 登陆酷狗音乐后随机选取一首歌&#xff0c;在请求里发现一段mp3文件&#xff0c;复制网址&#xff0c;确实是我们需要的url。 复制音频的…...

阿里云 DataWorks面试题集锦及参考答案

目录 简述阿里云 DataWorks 的核心功能模块及其在企业数据治理中的作用 简述 DataWorks 的核心功能模块及其应用场景 解释 DataWorks 中工作空间、项目、业务流程的三层逻辑关系 解释 DataWorks 中的 “节点”、“工作流” 和 “依赖关系” 设计 解释 DataWorks 中 “周期任…...

uniapp+Vue3 开发小程序的下载文件功能

小程序下载文件&#xff0c;可以先预览文件内容&#xff0c;然后在手机上打开文件的工具中选择保存。 简单示例&#xff1a;&#xff08;复制到HBuilder直接食用即可&#xff09; <template><view class"container-detail"><view class"example…...

Apache Log4j 2

目录 1. Apache Log4j 2 简介 1.1 什么是Log4j 2&#xff1f; 1.2 Log4j 2 的主要特性 2. Log4j 2 的核心组件 2.1 Logger 2.2 Appender 2.3 Layout 2.4 Filter 2.5 Configuration 3. Log4j 2 的配置 4. Log4j 2 的使用示例 4.1 Maven 依赖 4.2 示例代码 4.3 输出…...

4.2.2 ArrayList类

ArrayList类与List类的用法差不多&#xff0c;提供的方法也差不多。但是与List不同的是&#xff0c;ArrayList可以包含任意类型的数据&#xff0c;但是相应的&#xff0c;要使用包含的数据&#xff0c;就必须对数据做相应的装箱和拆箱&#xff08;关于装箱和拆箱&#xff0c;请…...

L1-088 静静的推荐

L1-088 静静的推荐 - 团体程序设计天梯赛-练习集 (pintia.cn) 题解 这里代码很简单&#xff0c;但是主要是循环里面的内容很难理解&#xff0c;下面是关于循环里面的内容理解&#xff1a; 这里 n 10 表示有 10 个学生&#xff0c;k 2 表示企业接受 2 批次的推荐名单&#…...