JAVA常用的异步处理方法总结
前言
在java项目开发过程中经常会遇到比较耗时的任务,通常是将这些任务做成异步操作,在java中实现异步操作有很多方法,本文主要总结一些常用的处理方法。为了简化,我们就拿一个实际的案例,再用每种方法去实现,对比看看这些方法有什么优缺点。
具体案例:
在C://img/url.txt中有1000个图片URL,我们需要将这些图片下载到C://img/download目录下。
需要将每张图片耗时累加起来,输出最后的时间
img.txt数据格式
https://a.com/1.jpg
https://a.com/2.jpg
https://a.com/3.jpg
...
计算Demo
比如 下载1.jpg 耗时1ms ,下载 2.jpg耗时2ms,…下载 n.jpg耗时 n ms
最终我们总耗时 1+2+3+…1000=500500ms
公共方法
为了方便测试我们先定义一个DownloadImg下载接口
public interface DownloadImg {/**** @param urls 需要下载图片的url* @return 所有图片下载总耗时ms*/Long download(List<String> urls) throws Exception ;/**** @param url 下载单个图片的URL* @return 下载单张图片耗时 ms*/Long download(String url) throws Exception;/*** 关闭线程池*/void shutdown() throws InterruptedException;/*** 提交任务* @param task* @return*/Future<?> submit(Runnable task);
}
为了简化下载、创建线程池、时间累加等操作,我们抽象一些共用方法:
public abstract class AbstractDownloadImg implements DownloadImg {//总耗时public AtomicLong sumTime=new AtomicLong(0L);public ExecutorService executorService = Executors.newFixedThreadPool(10);private AtomicInteger i = new AtomicInteger(1);public Long download(String url) {try {Long startTime = System.currentTimeMillis();FileUtils.copyURLToFile(new URL(url), new File(String.format("C:\img\download\%s.jpg", i.getAndIncrement())));Long castTime = System.currentTimeMillis() - startTime;System.out.println(Thread.currentThread().getName() + " download :" + url + " success, cast :" + castTime + " ms");return castTime;} catch (Exception e) {e.printStackTrace();return 0L;}}public void shutdown() throws InterruptedException {Thread.sleep(1000L);executorService.shutdown();}public Future<?> submit(Runnable task) {return executorService.submit(task);}
}
具体实现
一. 使用Future任务多线程下载
这种方法很是自然而然能想到,文件中有1000个图片,单个线程依次去下载太慢了,于是我们可以把1000张图片分成10个子任务,每个子任务去下载100张图片,子任务中把这100张图片耗时加起来,然后再把这10个子任务的耗时相加就是总时长了。
public class MultiThreadDownload extends AbstractDownloadImg implements DownloadImg {@Overridepublic Long download(List<String> imgUrls) throws Exception {//每100个一组List<List<String>> urls = Lists.partition(imgUrls, 100);//每个线程下载100张图片耗时返回结果List<Future<Long>> futures = new ArrayList<>();//分成10个线程,每个线程下载100个urls.forEach(subUrls->{FutureTask<Long> future= new FutureTask<>(() -> subUrls.stream().map(this::download).mapToLong(x->x).sum());//反回结果添加到futures中futures.add(future);//提交到线程池中submit(future);});//每线程耗时时间累加for(Future<Long> f:futures){sumTime.getAndAdd(f.get());}return sumTime.get();}
}
优点 :比较简单,大部人第一眼能想到的方法
缺点 :会产生水桶效应。如果前9个线程下载的都是小图片,很快下载完成了,第10个线程全是大图片,当最后9个线都空着时,第10个线程任务可能还在等待
二. CompletableFuture
上面的方法,是我们自己写Future,然后拿到返回值相加,在JUC包下面有个CompletableFuture,我们可以直接拿来用。
public class CompletableFutureDownload extends AbstractDownloadImg implements DownloadImg {@Overridepublic Long download(List<String> imgUrls) {//创建10个CompletableFutureCompletableFuture<Long>[] completableFutures = new CompletableFuture[imgUrls.size()];for (int i = 0; i < imgUrls.size(); i++) {String url = imgUrls.get(i);completableFutures[i] = CompletableFuture.supplyAsync(() -> download(url), executorService).whenComplete((k, v) -> sumTime.getAndAdd(k));}//所有任务合成一个CompletableFutureCompletableFuture allFuture = CompletableFuture.allOf(completableFutures).whenComplete((k, v) -> {System.out.println("all future complete cast: {} " + sumTime.get() + "ms");});//等待所有任务完成allFuture.join();return sumTime.get();}
}
三. 使用CountDownLatch
使用Futrue获取线程池返回结果还是有点麻烦的,在JUC包中有个CountDownLatch(倒计数门闩),使用这个实现代码就简化很多了,我们只需要把每张图片下载耗时累加起来,最后等待所有任务完成就OK了。
public class CountDownLatchDownload extends AbstractDownloadImg implements DownloadImg {@Overridepublic Long download(List<String> imgUrls) throws Exception {//门栓计数次CountDownLatch countDownLatch = new CountDownLatch(imgUrls.size());//总耗时AtomicLong sumTime = new AtomicLong(0L);for (String url : imgUrls) {submit(() -> {try {sumTime.getAndAdd(download(url));} finally {countDownLatch.countDown();}});}//等待所有任务结束countDownLatch.await();return sumTime.get();}
}
四. 使用lambda中的parallelStream
有了上面倒计数门闩,那我们自然可以想到JAVA8 lambda中的parallelStream了,用了parallelStream上面的代码又可以简化了。
public class ParallelStreamDownload extends AbstractDownloadImg implements DownloadImg {@Overridepublic Long download(List<String> imgUrls) throws Exception {return imgUrls.parallelStream().mapToLong(this::download).sum();}
}
需要注意的地parallelStream底层实现是使用的fork join,默认线程数是CPU核数,而且是全局共用一个线程池的,这点很重要,如果不指定线程池,项目别处使用了parallelStream,可能影响你你当前这处代码的执行速度。当然我们可以设置默认线程数和指定线程池。
//设置parallelStream线程数量为20个
System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "20");
指定ForkJoinPool的parallelStream
public class ParallelStreamDownload extends AbstractDownloadImg implements DownloadImg {@Overridepublic Long download(List<String> imgUrls) throws Exception {ForkJoinPool forkJoinPool = new ForkJoinPool(20);return forkJoinPool.submit(() -> imgUrls.parallelStream().mapToLong(this::download).sum()).get();}
}
优点 :代码非常简洁
缺点 :隐藏了很多细节,使用不当可能导致不可预估的后果,如果不了解内部原理,你都不知道为什么你的代码卡住了
五. 使用Fork/Join
parallelStream底层就是用的Fork/Join来实现的,所以我们也可以自己用Fork/Join来实现。
public class ForkJoinDownload extends AbstractDownloadImg implements DownloadImg {static class DownloadJoinTask extends RecursiveTask<Long> {//需要下载的URLprivate List<String> urls;//子任务最多条数private Integer MAX_TASK_COUNT = 100;private DownloadImg downloadImg;public DownloadJoinTask(List<String> urls, DownloadImg downloadImg) {this.urls = urls;this.downloadImg = downloadImg;}@Overrideprotected Long compute() {//当前任务<=100个,执行下载操作if (urls.size() <= MAX_TASK_COUNT) {return urls.stream().map(x -> {try {return downloadImg.download(x);} catch (Exception e) {e.printStackTrace();return 0L;}}).mapToLong(x -> x).sum();} else {//当前前任务拆分成两个任务ForkJoinDownload.DownloadJoinTask leftTask = new ForkJoinDownload.DownloadJoinTask(urls.subList(0, urls.size() / 2), downloadImg);ForkJoinDownload.DownloadJoinTask rightTask = new ForkJoinDownload.DownloadJoinTask(urls.subList(urls.size() / 2, urls.size()), downloadImg);//提交子任务invokeAll(leftTask, rightTask);return leftTask.join() + rightTask.join();}}}@Overridepublic Long download(List<String> imgUrls) throws Exception {ForkJoinPool forkJoinPool = new ForkJoinPool(20);DownloadJoinTask downloadJoinTask = new DownloadJoinTask(imgUrls, this);ForkJoinTask<Long> taskFuture = forkJoinPool.submit(downloadJoinTask);sumTime.addAndGet(taskFuture.get());return sumTime.get();}
}
优点 :工作窃取算法,不会产生水桶效应
缺点 :需要正确理解Fork/Join模型的任务执行逻辑才能写出好代码,有一定的门槛
测试代码
public static void main(String[] args) throws Exception {List<String> urls = FileUtils.readLines(new File("C:\img\url.txt"), Charset.defaultCharset());//DownloadImg downloadImg=new MultiThreadDownload();//DownloadImg downloadImg=new CountDownLatchDownload();//DownloadImg downloadImg=new ParallelStreamDownload();//DownloadImg downloadImg=new ForkJoinDownload();DownloadImg downloadImg = new CompletableFutureDownload();System.out.println("download all url cast: " + downloadImg.download(urls) + " ms");downloadImg.shutdown();
}
总结
本文主要通过下载图片这个具体的案例,介绍JAVA中5种常用的方法如何异步处理比较耗时的任务,并对比了优缺点,希望在项目过遇到类似的需求,可以帮助你找到合适的方法。
相关文章:
JAVA常用的异步处理方法总结
前言 在java项目开发过程中经常会遇到比较耗时的任务,通常是将这些任务做成异步操作,在java中实现异步操作有很多方法,本文主要总结一些常用的处理方法。为了简化,我们就拿一个实际的案例,再用每种方法去实现…...
GitLab统计代码量
gitlab官方文档:https://docs.gitlab.com/ee/api/index.html 1、生成密钥 登录gitlab,编辑个人资料,设置访问令牌 2、获取当前用户所有可见的项目 接口地址 GET请求 http://gitlab访问地址/api/v4/projects?private_tokenxxx 返回参数 …...
Linux TCP MIB统计汇总
概述 在 linux > 4.7 才将所有TCP丢包收敛到 函数 tcp_drop 中 指标详解 cat /proc/net/netstat 格式化命令 cat /proc/net/netstat | awk (f0) {name$1; i2; while ( i<NF) {n[i] $i; i }; f1; next} (f1){ i2; while ( i<NF){ printf "%s%s %d\n", …...
记录 docker linux部署jar
第一步 web sso user admin 中yml文件还原到阿里mysql数据库 第二步 各个jar进行打包处理 第三步 正式服务器的Jar备份 第四步 拉取以上jar包 到正式服务器中 第五步 查看 docker images 其中 web_service 1.0.2是上一个版本 上一个版本build 镜像命令是这样的(需…...
【Linux】教你用进程替换制作一个简单的Shell解释器
本章的代码可以访问这里获取。 由于程序代码是一体的,本章在分开讲解各部分的实现时,代码可能有些跳跃,建议在讲解各部分实现后看一下源代码方便理解程序。 制作一个简单的Shell解释器 一、观察Shell的运行状态二、简单的Shell解释器制作原理…...
onMeasure里如何重置只有1个子view一行满屏, 若有多个自适应一行
onMeasure里如何重置只有1个子view一行满屏, 若有多个自适应一行 可以尝试在 onMeasure 方法中重写 measureChildWithMargins 或 measureChild 方法来实现这个需求。 对于只有一个字的 View,我们可以把它的宽度设为屏幕宽度,高度设为最大高度,这样这个 View 就会占满一整行…...
Postman创建项目 对接口发起请求处理
查看本文之前 您需要理解了解 Postman 的几个简单工作区 如果还没有掌握 可以先查看我的文章 简单认识 Postman界面操作 那么 掌握之后 我们就可以正式来开启我们的接口测试 我们先选择 Collections 我们点上面这个加号 多拉一个项目出来 然后 我们选我们刚加号点出来的项目…...
在Vue3项目中js-cookie库的使用
文章目录 前言1.安装js-cookie库2.引入、使用js-cookie库 前言 今天分享一下在Vue3项目中引入使用js-cookie。 1.安装js-cookie库 js-cookie官网 安装js-cookie,输入 npm i js-cookie安装完成可以在package.json中看到: 安装以后,就可…...
【论文笔记】Attention和Visual Transformer
Attention和Visual Transformer Attention和Transformer为什么需要AttentionAttention机制Multi-head AttentionSelf Multi-head Attention,SMA TransformerVisual Transformer,ViT Attention和Transformer Attention机制在相当早的时间就已经被提出了&…...
独立IP服务器和共享IP服务器有什么区别
在选择一个合适的服务器时,最常见的选择是共享IP服务器和独立IP服务器。尽管两者看起来很相似,但它们有着很大的不同。本文将详细介绍共享IP服务器和独立IP服务器的不同之处,以及如何选择适合您需求的服务器。 一、什么是共享IP服务器? 共享…...
Java8
Java8 (一)、双列集合(二)、Map集合常用api(三)、Map集合的遍历方式(四)、HashMap(五)、LinkedHashMap(六)、TreeMap(七&a…...
nn.conv1d的输入问题
Conv1d(in_channels, out_channels, kernel_size, stride1, padding0, dilation1, groups1, biasTrue) in_channels(int) – 输入信号的通道。在文本分类中,即为词向量的维度out_channels(int) – 卷积产生的通道。有多少个out_channels,就需要多少个1维…...
js判断是否为null,undefined,NaN,空串或者空对象
js判断是否为null,undefined,NaN,空串或者空对象 这里写目录标题 js判断是否为null,undefined,NaN,空串或者空对象特殊值nullundefinedNaN空字符串("")空对象(…...
Java每日一练(20230501)
目录 1. 路径交叉 🌟🌟 2. 环形链表 🌟🌟 3. 被围绕的区域 🌟🌟 🌟 每日一练刷题专栏 🌟 Golang每日一练 专栏 Python每日一练 专栏 C/C每日一练 专栏 Java每日一练 专栏…...
从零开始学习Web自动化测试:如何使用Selenium和Python提高效率?
B站首推!2023最详细自动化测试合集,小白皆可掌握,让测试变得简单、快捷、可靠https://www.bilibili.com/video/BV1ua4y1V7Db 目录 引言: 一、了解Web自动化测试的基本概念 二、选择Web自动化测试工具 三、学习Web自动化测试的…...
fastdfs环境搭建
安装包下载路径 libfastcommon下载地址:https://github.com/happyfish100/libfastcommon/releasesFastDFS下载地址:https://github.com/happyfish100/fastdfs/releasesfastdfs-nginx-module下载地址:https://github.com/happyfish100/fastdf…...
有什么牌子台灯性价比高?性价比最高的护眼台灯
由心感叹现在的孩子真不容易,学习压力比我们小时候大太多,特别是数学,不再是简单的计算,而更多的是培养学生其他思维方式,有时候我都觉得一年级数学题是不是超纲了。我女儿现在基本上都是晚上9点30左右上床睡觉&#x…...
信息系统项目管理师 第9章 项目范围管理
1.管理基础 1.产品范围和项目范围 产品范围:某项产品、服务或成果所具有的特征和功能。根据产品需求来衡量。 项目范围:包括产品范围,是为交付具有规定特性与功能的产品、服务或成果而必须完成的工作。项目管理计划来衡量 2.管理新实践 更加注重与商业分析师一起…...
【Android入门到项目实战-- 8.2】—— 使用HTTP协议访问网络
目录 一、使用HttpURLConnection 1、使用Android的HttpURLConnection步骤 1)获取HttpURLConnection实例 2)设置HTTP请求使用的方法 3)定制HTTP请求,如连接超时、读取超时的毫秒数 4)调用getInputStream()方法获取返回的输入流 5)关闭HTTP连接 2、…...
Go官方指南(五)并发
Go 程 Go 程(goroutine)是由 Go 运行时管理的轻量级线程。 go f(x, y, z) 会启动一个新的 Go 程并执行 f(x, y, z) f, x, y 和 z 的求值发生在当前的 Go 程中,而 f 的执行发生在新的 Go 程中。 Go 程在相同的地址空间中运行,…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
