非极大值抑制详细原理(NMS含代码及详细注释)
作者主页:爱笑的男孩。的博客_CSDN博客-深度学习,YOLO,活动领域博主爱笑的男孩。擅长深度学习,YOLO,活动,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?type=collect
个人介绍:打工人。
分享内容:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。
如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com
目录
非极大值抑制原理
NMS源码含注释
需要的依赖包
nms算法
绘图
全部代码
效果图
非极大值抑制原理
非极大值抑制(Non-Maximum Suppression,NMS)是一种图像处理中的技术。它通常用于目标检测中,其主要作用是去除检测出来的冗余框,只保留最有可能包含目标物体的框,保留最优的检测结果。
在目标检测中,我们通常使用一个检测器来检测出可能存在的物体,并给出其位置和大小的预测框。然而,同一个物体可能会被多次检测出来,从而产生多个预测框。这时,我们就需要使用NMS来去除掉这些重叠的框,只保留最优的一个。
其基本原理是先在图像中找到所有可能包含目标物体的矩形区域,并按照它们的置信度进行排列。然后从置信度最高的矩形开始,遍历所有的矩形,如果发现当前的矩形与前面任意一个矩形的重叠面积大于一个阈值,则将当前矩形舍去。使得最终保留的预测框数量最少,但同时又能够保证检测的准确性和召回率。具体的实现方法包括以下几个步骤:
-
对于每个类别,按照预测框的置信度进行排序,将置信度最高的预测框作为基准。
-
从剩余的预测框中选择一个与基准框的重叠面积最大的框,如果其重叠面积大于一定的阈值,则将其删除。
-
对于剩余的预测框,重复步骤2,直到所有的重叠面积都小于阈值,或者没有被删除的框剩余为止。
通过这样的方式,NMS可以过滤掉所有与基准框重叠面积大于阈值的冗余框,从而实现检测结果的优化。值得注意的是,NMS的阈值通常需要根据具体的数据集和应用场景进行调整,以兼顾准确性和召回率。
总结来说,非极大值抑制原理是通过较高置信度的目标框作为基准,筛选出与其重叠度较低的目标框,从而去除掉冗余的目标框,提高目标检测的精度和效率。
NMS源码含注释
需要的依赖包
import numpy as np import matplotlib.pyplot as plt #安装 #pip install numpy==1.19.5 -i https://pypi.tuna.tsinghua.edu.cn/simple/ #pip install matplotlib==3.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple/
nms算法
#nms 算法
def py_cpu_nms(dets, thresh):#边界框的坐标x1 = dets[:, 0]#所有行第一列y1 = dets[:, 1]#所有行第二列x2 = dets[:, 2]#所有行第三列y2 = dets[:, 3]#所有行第四列#计算边界框的面积areas = (y2 - y1 + 1) * (x2 - x1 + 1) #(第四列 - 第二列 + 1) * (第三列 - 第一列 + 1)#执行度,包围盒的信心分数scores = dets[:, 4]#所有行第五列keep = []#保留#按边界框的置信度得分排序 尾部加上[::-1] 倒序的意思 如果没有[::-1] argsort返回的是从小到大的index = scores.argsort()[::-1]#对所有行的第五列进行从大到小排序,返回索引值#迭代边界框while index.size > 0: # 6 > 0, 3 > 0, 2 > 0i = index[0] # every time the first is the biggst, and add it directly每次第一个是最大的,直接加进去keep.append(i)#保存#计算并集上交点的纵坐标(IOU)x11 = np.maximum(x1[i], x1[index[1:]]) # calculate the points of overlap计算重叠点y11 = np.maximum(y1[i], y1[index[1:]]) # index[1:] 从下标为1的数开始,直到结束x22 = np.minimum(x2[i], x2[index[1:]])y22 = np.minimum(y2[i], y2[index[1:]])#计算并集上的相交面积w = np.maximum(0, x22 - x11 + 1) # the weights of overlap重叠权值、宽度h = np.maximum(0, y22 - y11 + 1) # the height of overlap重叠高度overlaps = w * h# 重叠部分、交集#IoU:intersection-over-union的本质是搜索局部极大值,抑制非极大值元素。即两个边界框的交集部分除以它们的并集。# 重叠部分 / (面积[i] + 面积[索引[1:]] - 重叠部分)ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)#重叠部分就是交集,iou = 交集 / 并集print("ious", ious)# ious <= 0.7idx = np.where(ious <= thresh)[0]#判断阈值print("idx", idx)index = index[idx + 1] # because index start from 1 因为下标从1开始return keep #返回保存的值
绘图
#画图函数
def plot_bbox(dets, c='k'):#c = 颜色 默认黑色# 边界框的坐标x1 = dets[:, 0] # 所有行第一列y1 = dets[:, 1] # 所有行第二列x2 = dets[:, 2] # 所有行第三列y2 = dets[:, 3] # 所有行第四列plt.plot([x1, x2], [y1, y1], c)#绘图plt.plot([x1, x1], [y1, y2], c)#绘图plt.plot([x1, x2], [y2, y2], c)#绘图plt.plot([x2, x2], [y1, y2], c)#绘图plt.title("nms")#标题
全部代码
#导入数组包
import numpy as np
import matplotlib.pyplot as plt#画图包#画图函数
def plot_bbox(dets, c='k'):#c = 颜色 默认黑色# 边界框的坐标x1 = dets[:, 0] # 所有行第一列y1 = dets[:, 1] # 所有行第二列x2 = dets[:, 2] # 所有行第三列y2 = dets[:, 3] # 所有行第四列plt.plot([x1, x2], [y1, y1], c)#绘图plt.plot([x1, x1], [y1, y2], c)#绘图plt.plot([x1, x2], [y2, y2], c)#绘图plt.plot([x2, x2], [y1, y2], c)#绘图plt.title("nms")#标题#nms 算法
def py_cpu_nms(dets, thresh):#边界框的坐标x1 = dets[:, 0]#所有行第一列y1 = dets[:, 1]#所有行第二列x2 = dets[:, 2]#所有行第三列y2 = dets[:, 3]#所有行第四列#计算边界框的面积areas = (y2 - y1 + 1) * (x2 - x1 + 1) #(第四列 - 第二列 + 1) * (第三列 - 第一列 + 1)#执行度,包围盒的信心分数scores = dets[:, 4]#所有行第五列keep = []#保留#按边界框的置信度得分排序 尾部加上[::-1] 倒序的意思 如果没有[::-1] argsort返回的是从小到大的index = scores.argsort()[::-1]#对所有行的第五列进行从大到小排序,返回索引值#迭代边界框while index.size > 0: # 6 > 0, 3 > 0, 2 > 0i = index[0] # every time the first is the biggst, and add it directly每次第一个是最大的,直接加进去keep.append(i)#保存#计算并集上交点的纵坐标(IOU)x11 = np.maximum(x1[i], x1[index[1:]]) # calculate the points of overlap计算重叠点y11 = np.maximum(y1[i], y1[index[1:]]) # index[1:] 从下标为1的数开始,直到结束x22 = np.minimum(x2[i], x2[index[1:]])y22 = np.minimum(y2[i], y2[index[1:]])#计算并集上的相交面积w = np.maximum(0, x22 - x11 + 1) # the weights of overlap重叠权值、宽度h = np.maximum(0, y22 - y11 + 1) # the height of overlap重叠高度overlaps = w * h# 重叠部分、交集#IoU:intersection-over-union的本质是搜索局部极大值,抑制非极大值元素。即两个边界框的交集部分除以它们的并集。# 重叠部分 / (面积[i] + 面积[索引[1:]] - 重叠部分)ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)#重叠部分就是交集,iou = 交集 / 并集print("ious", ious)# ious <= 0.7idx = np.where(ious <= thresh)[0]#判断阈值print("idx", idx)index = index[idx + 1] # because index start from 1 因为下标从1开始return keep #返回保存的值def main():# 创建数组boxes = np.array([[100, 100, 210, 210, 0.72],[250, 250, 420, 420, 0.8],[220, 220, 320, 330, 0.92],[100, 100, 210, 210, 0.72],[230, 240, 325, 330, 0.81],[220, 230, 315, 340, 0.9]])show(boxes)def show(boxes):plt.figure(1) # 画图窗口、图形plt.subplot(1, 2, 1) # 子图plot_bbox(boxes, 'k') # before nms 使用nms(非极大抑制)算法前plt.subplot(1, 2, 2) # 子图keep = py_cpu_nms(boxes, thresh=0.7) # nms(非极大抑制)算法print(keep)plot_bbox(boxes[keep], 'r') # after nms 使用nms(非极大抑制)算法后plt.show() # 显示图像if __name__ == '__main__':main()
效果图
相关文章:
非极大值抑制详细原理(NMS含代码及详细注释)
作者主页:爱笑的男孩。的博客_CSDN博客-深度学习,YOLO,活动领域博主爱笑的男孩。擅长深度学习,YOLO,活动,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?typecollect 个…...
女朋友说总是记不住Git命令,怎么办?安排!
如果你也和我女朋友一样总是忘记Git命令,觉得记忆Git命令是很枯燥和麻烦的事情。我写了一个包含了40 条常用Git命令的清单。你一定要收藏起来,当你忘记Git命令的时候,就可以打开来查看啦!!! 1.初始化本地仓…...
【ChatGLM】本地版ChatGPT ?6G显存即可轻松使用 !ChatGLM-6B 清华开源模型本地部署教程
目录 感谢B站秋葉aaaki大佬 前言 部署资源 部署流程 实机演示 ChatGML微调(人格炼成)(个人感觉蛮有趣的地方) 分享有趣の微调人格 实机演示(潘金莲人格) 感谢B站秋葉aaaki大佬 秋葉aaaki的个人空间…...
【MySQL】练习六 关系数据理论及数据库设计
文章目录 主要内容练习题一、选择题二、填空题三、判断题四、简答题主要内容 一个不好的关系模式可能存在的问题;函数依赖及三种函数依赖的定义:完全、部分、传递范式及1NF/2NF/3NF/BCNF的判定模式分解数据库设计的基本步骤概念设计(E-R图)逻辑模型(E-R图转换为逻辑模型的…...
UG NX二次开发(C++)-建模-修改NXObject或者Feature的颜色(一)
文章目录 1、前言2、在UG NX中修改Feature的颜色操作3、采用NXOpen(C)实现3.1 创建修改特征的方法3.2 调用ModifyFeatureColor方法3.3 测试结果 1、前言 在UG NX中,改变NXObject和Feature的操作是不相同的,所以其二次开发的代码也不一样,我们…...
全球天气weather.com的icon汇总表 天气现象代码枚举
全球天气weather.com的icon汇总表 天气现象代码枚举 Icon代码天气情况(列举常见情况,不包含全部)3大暴雨、大暴雨伴有风4大雷雨、强雷雨、雷雨、雷雨伴有风5雨或雪、雨伴有阵雪6雨夹冰粒、雨夹冰粒伴有风7雨夹雪、小雨夹雪、雪伴有冰粒和风、小雨夹雪伴有风、雪伴有冰粒8冻毛雨…...
【Python】【进阶篇】16、settings.py配置文件详解
目录 settings.py配置文件详解1. settings.py文件介绍1) BASE_DIR2) SECRET_KEY3) DEBUG4) ALLOWED_HOSTS5) INSTALLED_APPS6) MIDDLEWARE7) ROOT_URLCONF8) TEMPLATES9) WSGI_APPLICATION10) DATABASES11) AUTH_PASSWORD_VALIDATORS12) LANGUAGE_CODE和TIME_ZONE13) USE_118N和…...
【华为机试】HJ1 字符串最后一个单词的长度
【华为机试】 HJ1 字符串最后一个单词的长度 描述 计算字符串最后一个单词的长度,单词以空格隔开,字符串长度小于5000。(注:字符串末尾不以空格为结尾) 输入描述: 输入一行,代表要计算的字符串…...
Spring DI简介及依赖注入方式和依赖注入类型
目录 一、什么是依赖注入 二、依赖注入方式 1. Setter注入 2. 构造方法注入 3. 自动注入 三、依赖注入类型 1. 注入bean类型 2. 注入基本数据类型 3. 注入List集合 4. 注入Set集合 5. 注入Map集合 6. 注入Properties对象 往期专栏&文章相关导读 1. Maven系…...
ES6栈方法和队列方法
在 JavaScript 这门语言中,栈和队列是非常重要的数据结构,它们可以帮助我们更好地组织和管理数据。我们可以使用 ES6 标准中新增的方法来实现栈和队列的操作。这篇文章将介绍 ES6 中数组的栈方法和队列方法。 栈(Stack) 栈是一种后进先出(L…...
EventBus(事件总线)的使用和源码的简单解析
Google Guava EventBus(事件总线)的使用和源码的简单解析 什么是EventBus? 事件总线(EventBus)是一种广泛用于软件架构中的设计模式,用于实现解耦和松散耦合的通信机制。它可以帮助组织和管理应用程序中不同组件之间的通信&…...
《汇编语言》- 读书笔记 - 第2章-寄存器
《汇编语言》- 读书笔记 - 第2章-寄存器 2.0 8086CPU 寄存器段地址:偏移地址 2.1 通用寄存器2.2 字在寄存器中的存储2.3 几条汇编指令表2.1汇编指令举例表2.2 程序段中指令的执行情况之一问题 2.1表2.3 程序段中指令的执行情况之二问题 2.2 检测点 2.12.4 物理地址2.5 16位结构…...
English Learning - L3 综合练习 1 VOA-Color 2023.04.26 周三
English Learning - L3 综合练习 1 VOA-Color 2023.04.26 周三 主题整体听一遍精听句子 1扩展 way of doing | way to do sth 句子 2扩展 Expression扩展 base 句子 3句子 4扩展 red-hot 句子 5句子 6扩展 fiery 句子 7句子 8句子 9句子 10句子 11扩展 born 句子 12句子 13句子…...
50道web前端工程师面试题及答案解析,你学会了吗
简介:本文包含了50个实用的前端面试题及答案解析,涵盖了HTML、CSS、JavaScript、DOM、Ajax、MVC、模块化、ES6、SPA、Webpack、Babel、Virtual DOM、响应式设计、移动优先设计、响应式图片、CSS 预处理器、后处理器、模块化、布局、盒模型、浮动、定位、…...
【链表OJ题 1】反转链表
目录 题目来源: 代码实现 1、方法一 1.1分析 2、方法二 2.1 分析 题目来源: 力扣 题目描述: 代码实现 1、方法一 struct ListNode* reverseList(struct ListNode* head) {struct ListNode* prev NULL, * cur head;while (cur){st…...
【华为OD机试真题】计算网络信号 (javaC++python)100%通过率 超详细代码注释
计算网络信号 知识点广搜数组 时间限制:1s 空间限制:256MB 限定语言:不限 题目描述: 网络信号经过传递会逐层衰减,且遇到阻隔物无法直接穿透,在此情况下需要计算某个位置的网络信号值,注意:网络信号可以绕过阴隔物array[m][n]的一维数组代表网格地图,array[i][j]=0代表i…...
Tomcat8和Tomcat9乱码问题
今天新开了一个小项目,我丢,乱码了,咋回事,好久没遇到过了,都忘了咋回事。今天必须记录下来,避免继续踩坑 Tomcat 8 不需要进行任何配置即可,它默认的是GBK,而win10 win7 默认的也是…...
Lesson13 IP协议
IP: 提供一种能力,将数据从A主机送到B主机的能力,但不一定会成功 主机 : 配有 IP 地址 , 但是不进行路由控制的设备 ; 路由器: 即配有 IP 地址 , 又能进行路由控制 ; 节点 : 主机和路由器的统称; 协议头格式 如何封装和解包: 定长报头 自描述字段 如何交付(分用) : 8…...
【每日一题Day192】LC1033移动石子直到连续 | 分类讨论 贪心
移动石子直到连续【LC1033】 三枚石子放置在数轴上,位置分别为 a,b,c。 每一回合,你可以从两端之一拿起一枚石子(位置最大或最小),并将其放入两端之间的任一空闲位置。形式上,假设这…...
2023年软件测试常见面试题100%问必背全套教程
随着数字化时代的到来,软件测试越来越受到重视。在未来的几年里,软件测试将继续成为信息技术领域中的热门职业之一。如果你是一名正在寻找或准备进入软件测试行业的人,那么这套常见面试题全套教程对你来说会非常有用。 这套教程旨在帮助你了…...
TypeScript 基本概念
TypeScript 是什么? 目标:能够说出什么是 TypeScript TS 官方文档 TS 中文参考 - 不再维护 TypeScript 简称:TS,是 JavaScript 的超集,JS 有的 TS 都有 TypeScript Type JavaScript(在 JS 基础之上…...
libfacedetection 人脸检测库 检测速度慢的问题
目录 一、libfacedetection 性能介绍 英特尔CPU 使用AVX2指令集 使用AVX512指令集 嵌入式设备 二、加速检测速度 libfacedetetion的前向推理速度很快的原因 使用axv2加速指令 一、libfacedetection 性能介绍 在上一篇文章中,我发现使用摄像头检测,构…...
项目骨架搭建
CSS样式补充 精灵图 CSS精灵图(CSS Sprites)是一种网页优化技术,通过将多个小图像合并成一个大图像,然后通过CSS的背景定位(background-position)属性来显示对应的图像部分。这种技术可以减少HTTP请求次数…...
“火灾不分昼夜,安全在我心中”——五一前厂房消防检查纪实
检查人员: Scott, Jason, Willson, Hanson 检查时间: 2023年4月28日 检查地点: 1厂房、2厂房室内外 检查内容: 一、室内外消火栓: 室内栓外观正常; 室外栓: 栓体防冻防尘套破损、遗失,消防栓缺少防撞保护; 按规定距离厂房外墙不宜小于5…...
UNIX环境高级编程——进程关系
9.1 引言 本章详细说明进程组以及会话的概念,还将介绍登录shell(登录时所调用的)和所有从登录shell启动的进程之间的关系。 9.2 终端登录 9.3 网络登录 9.4 进程组 每个进程除了有一进程ID之外,还属于一个进程组,进…...
C# ref和out用法和区别
首先:两者都是按地址传递的,使用后都将改变原来参数的数值。 其次:ref可以把参数的数值传递进函数,但是out是要把参数清空,就是说你无法把一个数值从out传递进去的,out进去后,参数的数值为空&am…...
信息复制的革命:印刷术【提高信噪比】
文章目录 引言I 保证信息不被噪音所影响1.1 校对抄写错误的方法1.2 印刷术II 雕版印刷和活字印刷2.1 雕版印刷术2.2 毕昇的胶泥活字印刷2.3 古腾堡的铅活字印刷引言 科学的诞生,丰富了信息产生的源头。文字和纸张,加速了信息的传播和文明的进步。I 保证信息不被噪音所影响 复…...
【MySQL】事务
事务是一组操作的集合,我们将一组操作视为一个整体,所以事务里面的操作的时候要么同时成功,要么同时失败,之所以会有事务也是因为我们在实际生活中会用到 最典型的例子就是转账操作:A向B进行转账,A这边扣款成功的同时B那边一定是收款成功的,如果没有事务的话就会出现A扣款成功但…...
学习HCIP的day.03
目录 OSPF:开放式最短路径优先协议 OSPF的数据包 -- 5种 OSPF的状态机 OSPF的工作过程 OSPF的基础配置 关于OSPF协议从邻居建立成为邻接的条件 OSPF的接口网络类型 OSPF:开放式最短路径优先协议 无类别链路状态型IGP协议;由于其基于拓…...
Maven项目的配置
Maven是什么?它的作用是什么? Maven是一种开源的构建工具,它可以自动化构建、测试、部署和管理Java项目。它提供了一个中心化的构建过程,包括依赖管理、项目结构管理、插件管理等,使得开发人员更方便地维护和协作应用…...
厚街商城网站建设/上海营销seo
一、主流浏览器及其内核: 主流浏览器内核IEtridentFirefoxGeckoGoogle ChromeWebkit/blinkSafari(苹果自带)Webkit(谷歌工程师和苹果工程师一起研发的)Opera(丹麦)presto 二、主流浏览器的要求…...
wordpress自定义文章添加标签/seo广州工作好吗
自建epel yum仓库并安装nginx1、创建 repo 文件2、yum repolist查看repolist3、安装 nginx4、验证 nginx 是否安装1、创建 repo 文件 [rootneo ~]# cat /etc/yum.repos.d/epel.repo [epel] nameepel repository baseurlhttps://epel.mirror.constant.com//7/x86_64/ gpgcheck0…...
登录器显的窗口网站怎么做/看b站视频软件下载安装手机
数据结构实验之图论二:图的深度遍历 Description 请定一个无向图,顶点编号从0到n-1,用深度优先搜索(DFS),遍历并输出。遍历时,先遍历节点编号小的。 Input 输入第一行为整数n(0 < n < 100ÿ…...
企业备案网站服务内容/大数据培训班需要多少钱
就在前几天Video Cardz公布了他们针对近期GM204芯片的数据分析的推理成绩,而其中不仅包含GeForce GTX980以及970的预测成绩。还包括了移动产品线中GeForce 900M系列的产品性能推测。其中NVIDIA目前打算上市两款产品,分别是GeForce GTX980M以及GTX970M。值…...
网站页面设计模板代码/软文兼职
推荐最近很火的 6 个开源项目,本期所有推荐都已经收录到 Awesome GitHub Repo,欢迎各位读者 Star。欢迎 Star:https://github.com/Wechat-ggGitHub/Awesome-GitHub-Repo本期推荐的开源项目是:1. 中国 Web 开发者路线图2. 一个简单…...
在柬埔寨做网站彩票推广/google play服务
让两个对象间建立weak关系 这是为了给两个对象间建立weak关系,当一个对象被释放时,另外一个对象再获取这个值时就是nil,也就是不持有这个对象:) 源码: WeakRelatedDictionary.h 与 WeakRelatedDictionary.m // // WeakRelatedDic…...