当前位置: 首页 > news >正文

非极大值抑制详细原理(NMS含代码及详细注释)

作者主页:爱笑的男孩。的博客_CSDN博客-深度学习,YOLO,活动领域博主爱笑的男孩。擅长深度学习,YOLO,活动,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?type=collect

个人介绍:打工人。

分享内容:机器学习、深度学习、python相关内容、日常BUG解决方法及Windows&Linux实践小技巧。

如发现文章有误,麻烦请指出,我会及时去纠正。有其他需要可以私信我或者发我邮箱:zhilong666@foxmail.com

目录

非极大值抑制原理 

NMS源码含注释

需要的依赖包

nms算法

绘图

全部代码

效果图


非极大值抑制原理 

        非极大值抑制(Non-Maximum Suppression,NMS)是一种图像处理中的技术。它通常用于目标检测中,其主要作用是去除检测出来的冗余框,只保留最有可能包含目标物体的框,保留最优的检测结果。

        在目标检测中,我们通常使用一个检测器来检测出可能存在的物体,并给出其位置和大小的预测框。然而,同一个物体可能会被多次检测出来,从而产生多个预测框。这时,我们就需要使用NMS来去除掉这些重叠的框,只保留最优的一个。

        其基本原理是先在图像中找到所有可能包含目标物体的矩形区域,并按照它们的置信度进行排列。然后从置信度最高的矩形开始,遍历所有的矩形,如果发现当前的矩形与前面任意一个矩形的重叠面积大于一个阈值,则将当前矩形舍去。使得最终保留的预测框数量最少,但同时又能够保证检测的准确性和召回率。具体的实现方法包括以下几个步骤:

  1. 对于每个类别,按照预测框的置信度进行排序,将置信度最高的预测框作为基准。

  2. 从剩余的预测框中选择一个与基准框的重叠面积最大的框,如果其重叠面积大于一定的阈值,则将其删除。

  3. 对于剩余的预测框,重复步骤2,直到所有的重叠面积都小于阈值,或者没有被删除的框剩余为止。

        通过这样的方式,NMS可以过滤掉所有与基准框重叠面积大于阈值的冗余框,从而实现检测结果的优化。值得注意的是,NMS的阈值通常需要根据具体的数据集和应用场景进行调整,以兼顾准确性和召回率。

        总结来说,非极大值抑制原理是通过较高置信度的目标框作为基准,筛选出与其重叠度较低的目标框,从而去除掉冗余的目标框,提高目标检测的精度和效率。

NMS源码含注释

需要的依赖包

import numpy as np 
import matplotlib.pyplot as plt
#安装
#pip install numpy==1.19.5 -i https://pypi.tuna.tsinghua.edu.cn/simple/
#pip install matplotlib==3.2.2 -i https://pypi.tuna.tsinghua.edu.cn/simple/ 

nms算法

#nms 算法
def py_cpu_nms(dets, thresh):#边界框的坐标x1 = dets[:, 0]#所有行第一列y1 = dets[:, 1]#所有行第二列x2 = dets[:, 2]#所有行第三列y2 = dets[:, 3]#所有行第四列#计算边界框的面积areas = (y2 - y1 + 1) * (x2 - x1 + 1) #(第四列 - 第二列 + 1) * (第三列 - 第一列 + 1)#执行度,包围盒的信心分数scores = dets[:, 4]#所有行第五列keep = []#保留#按边界框的置信度得分排序   尾部加上[::-1] 倒序的意思 如果没有[::-1] argsort返回的是从小到大的index = scores.argsort()[::-1]#对所有行的第五列进行从大到小排序,返回索引值#迭代边界框while index.size > 0: # 6 > 0,      3 > 0,      2 > 0i = index[0]  # every time the first is the biggst, and add it directly每次第一个是最大的,直接加进去keep.append(i)#保存#计算并集上交点的纵坐标(IOU)x11 = np.maximum(x1[i], x1[index[1:]])  # calculate the points of overlap计算重叠点y11 = np.maximum(y1[i], y1[index[1:]])  # index[1:] 从下标为1的数开始,直到结束x22 = np.minimum(x2[i], x2[index[1:]])y22 = np.minimum(y2[i], y2[index[1:]])#计算并集上的相交面积w = np.maximum(0, x22 - x11 + 1)  # the weights of overlap重叠权值、宽度h = np.maximum(0, y22 - y11 + 1)  # the height of overlap重叠高度overlaps = w * h# 重叠部分、交集#IoU:intersection-over-union的本质是搜索局部极大值,抑制非极大值元素。即两个边界框的交集部分除以它们的并集。#          重叠部分 / (面积[i] + 面积[索引[1:]] - 重叠部分)ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)#重叠部分就是交集,iou = 交集 / 并集print("ious", ious)#               ious <= 0.7idx = np.where(ious <= thresh)[0]#判断阈值print("idx", idx)index = index[idx + 1]  # because index start from 1 因为下标从1开始return keep #返回保存的值

绘图


#画图函数
def plot_bbox(dets, c='k'):#c = 颜色 默认黑色# 边界框的坐标x1 = dets[:, 0]  # 所有行第一列y1 = dets[:, 1]  # 所有行第二列x2 = dets[:, 2]  # 所有行第三列y2 = dets[:, 3]  # 所有行第四列plt.plot([x1, x2], [y1, y1], c)#绘图plt.plot([x1, x1], [y1, y2], c)#绘图plt.plot([x1, x2], [y2, y2], c)#绘图plt.plot([x2, x2], [y1, y2], c)#绘图plt.title("nms")#标题

全部代码

#导入数组包
import numpy as np
import matplotlib.pyplot as plt#画图包#画图函数
def plot_bbox(dets, c='k'):#c = 颜色 默认黑色# 边界框的坐标x1 = dets[:, 0]  # 所有行第一列y1 = dets[:, 1]  # 所有行第二列x2 = dets[:, 2]  # 所有行第三列y2 = dets[:, 3]  # 所有行第四列plt.plot([x1, x2], [y1, y1], c)#绘图plt.plot([x1, x1], [y1, y2], c)#绘图plt.plot([x1, x2], [y2, y2], c)#绘图plt.plot([x2, x2], [y1, y2], c)#绘图plt.title("nms")#标题#nms 算法
def py_cpu_nms(dets, thresh):#边界框的坐标x1 = dets[:, 0]#所有行第一列y1 = dets[:, 1]#所有行第二列x2 = dets[:, 2]#所有行第三列y2 = dets[:, 3]#所有行第四列#计算边界框的面积areas = (y2 - y1 + 1) * (x2 - x1 + 1) #(第四列 - 第二列 + 1) * (第三列 - 第一列 + 1)#执行度,包围盒的信心分数scores = dets[:, 4]#所有行第五列keep = []#保留#按边界框的置信度得分排序   尾部加上[::-1] 倒序的意思 如果没有[::-1] argsort返回的是从小到大的index = scores.argsort()[::-1]#对所有行的第五列进行从大到小排序,返回索引值#迭代边界框while index.size > 0: # 6 > 0,      3 > 0,      2 > 0i = index[0]  # every time the first is the biggst, and add it directly每次第一个是最大的,直接加进去keep.append(i)#保存#计算并集上交点的纵坐标(IOU)x11 = np.maximum(x1[i], x1[index[1:]])  # calculate the points of overlap计算重叠点y11 = np.maximum(y1[i], y1[index[1:]])  # index[1:] 从下标为1的数开始,直到结束x22 = np.minimum(x2[i], x2[index[1:]])y22 = np.minimum(y2[i], y2[index[1:]])#计算并集上的相交面积w = np.maximum(0, x22 - x11 + 1)  # the weights of overlap重叠权值、宽度h = np.maximum(0, y22 - y11 + 1)  # the height of overlap重叠高度overlaps = w * h# 重叠部分、交集#IoU:intersection-over-union的本质是搜索局部极大值,抑制非极大值元素。即两个边界框的交集部分除以它们的并集。#          重叠部分 / (面积[i] + 面积[索引[1:]] - 重叠部分)ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)#重叠部分就是交集,iou = 交集 / 并集print("ious", ious)#               ious <= 0.7idx = np.where(ious <= thresh)[0]#判断阈值print("idx", idx)index = index[idx + 1]  # because index start from 1 因为下标从1开始return keep #返回保存的值def main():# 创建数组boxes = np.array([[100, 100, 210, 210, 0.72],[250, 250, 420, 420, 0.8],[220, 220, 320, 330, 0.92],[100, 100, 210, 210, 0.72],[230, 240, 325, 330, 0.81],[220, 230, 315, 340, 0.9]])show(boxes)def show(boxes):plt.figure(1)  # 画图窗口、图形plt.subplot(1, 2, 1)  # 子图plot_bbox(boxes, 'k')  # before nms 使用nms(非极大抑制)算法前plt.subplot(1, 2, 2)  # 子图keep = py_cpu_nms(boxes, thresh=0.7)  # nms(非极大抑制)算法print(keep)plot_bbox(boxes[keep], 'r')  # after nms 使用nms(非极大抑制)算法后plt.show()  # 显示图像if __name__ == '__main__':main()

效果图

 

相关文章:

非极大值抑制详细原理(NMS含代码及详细注释)

作者主页&#xff1a;爱笑的男孩。的博客_CSDN博客-深度学习,YOLO,活动领域博主爱笑的男孩。擅长深度学习,YOLO,活动,等方面的知识,爱笑的男孩。关注算法,python,计算机视觉,图像处理,深度学习,pytorch,神经网络,opencv领域.https://blog.csdn.net/Code_and516?typecollect 个…...

女朋友说总是记不住Git命令,怎么办?安排!

如果你也和我女朋友一样总是忘记Git命令&#xff0c;觉得记忆Git命令是很枯燥和麻烦的事情。我写了一个包含了40 条常用Git命令的清单。你一定要收藏起来&#xff0c;当你忘记Git命令的时候&#xff0c;就可以打开来查看啦&#xff01;&#xff01;&#xff01; 1.初始化本地仓…...

【ChatGLM】本地版ChatGPT ?6G显存即可轻松使用 !ChatGLM-6B 清华开源模型本地部署教程

目录 感谢B站秋葉aaaki大佬 前言 部署资源 部署流程 实机演示 ChatGML微调&#xff08;人格炼成&#xff09;&#xff08;个人感觉蛮有趣的地方&#xff09; 分享有趣の微调人格 实机演示&#xff08;潘金莲人格&#xff09; 感谢B站秋葉aaaki大佬 秋葉aaaki的个人空间…...

【MySQL】练习六 关系数据理论及数据库设计

文章目录 主要内容练习题一、选择题二、填空题三、判断题四、简答题主要内容 一个不好的关系模式可能存在的问题;函数依赖及三种函数依赖的定义:完全、部分、传递范式及1NF/2NF/3NF/BCNF的判定模式分解数据库设计的基本步骤概念设计(E-R图)逻辑模型(E-R图转换为逻辑模型的…...

UG NX二次开发(C++)-建模-修改NXObject或者Feature的颜色(一)

文章目录 1、前言2、在UG NX中修改Feature的颜色操作3、采用NXOpen(C)实现3.1 创建修改特征的方法3.2 调用ModifyFeatureColor方法3.3 测试结果 1、前言 在UG NX中&#xff0c;改变NXObject和Feature的操作是不相同的&#xff0c;所以其二次开发的代码也不一样&#xff0c;我们…...

全球天气weather.com的icon汇总表 天气现象代码枚举

全球天气weather.com的icon汇总表 天气现象代码枚举 Icon代码天气情况(列举常见情况,不包含全部)3大暴雨、大暴雨伴有风4大雷雨、强雷雨、雷雨、雷雨伴有风5雨或雪、雨伴有阵雪6雨夹冰粒、雨夹冰粒伴有风7雨夹雪、小雨夹雪、雪伴有冰粒和风、小雨夹雪伴有风、雪伴有冰粒8冻毛雨…...

【Python】【进阶篇】16、settings.py配置文件详解

目录 settings.py配置文件详解1. settings.py文件介绍1) BASE_DIR2) SECRET_KEY3) DEBUG4) ALLOWED_HOSTS5) INSTALLED_APPS6) MIDDLEWARE7) ROOT_URLCONF8) TEMPLATES9) WSGI_APPLICATION10) DATABASES11) AUTH_PASSWORD_VALIDATORS12) LANGUAGE_CODE和TIME_ZONE13) USE_118N和…...

【华为机试】HJ1 字符串最后一个单词的长度

【华为机试】 HJ1 字符串最后一个单词的长度 描述 计算字符串最后一个单词的长度&#xff0c;单词以空格隔开&#xff0c;字符串长度小于5000。&#xff08;注&#xff1a;字符串末尾不以空格为结尾&#xff09; 输入描述&#xff1a; 输入一行&#xff0c;代表要计算的字符串…...

Spring DI简介及依赖注入方式和依赖注入类型

目录 一、什么是依赖注入 二、依赖注入方式 1. Setter注入 2. 构造方法注入 3. 自动注入 三、依赖注入类型 1. 注入bean类型 2. 注入基本数据类型 3. 注入List集合 4. 注入Set集合 5. 注入Map集合 6. 注入Properties对象 往期专栏&文章相关导读 1. Maven系…...

ES6栈方法和队列方法

在 JavaScript 这门语言中&#xff0c;栈和队列是非常重要的数据结构&#xff0c;它们可以帮助我们更好地组织和管理数据。我们可以使用 ES6 标准中新增的方法来实现栈和队列的操作。这篇文章将介绍 ES6 中数组的栈方法和队列方法。 栈(Stack) 栈是一种后进先出&#xff08;L…...

EventBus(事件总线)的使用和源码的简单解析

Google Guava EventBus(事件总线)的使用和源码的简单解析 什么是EventBus&#xff1f; 事件总线&#xff08;EventBus&#xff09;是一种广泛用于软件架构中的设计模式&#xff0c;用于实现解耦和松散耦合的通信机制。它可以帮助组织和管理应用程序中不同组件之间的通信&…...

《汇编语言》- 读书笔记 - 第2章-寄存器

《汇编语言》- 读书笔记 - 第2章-寄存器 2.0 8086CPU 寄存器段地址:偏移地址 2.1 通用寄存器2.2 字在寄存器中的存储2.3 几条汇编指令表2.1汇编指令举例表2.2 程序段中指令的执行情况之一问题 2.1表2.3 程序段中指令的执行情况之二问题 2.2 检测点 2.12.4 物理地址2.5 16位结构…...

English Learning - L3 综合练习 1 VOA-Color 2023.04.26 周三

English Learning - L3 综合练习 1 VOA-Color 2023.04.26 周三 主题整体听一遍精听句子 1扩展 way of doing | way to do sth 句子 2扩展 Expression扩展 base 句子 3句子 4扩展 red-hot 句子 5句子 6扩展 fiery 句子 7句子 8句子 9句子 10句子 11扩展 born 句子 12句子 13句子…...

50道web前端工程师面试题及答案解析,你学会了吗

简介&#xff1a;本文包含了50个实用的前端面试题及答案解析&#xff0c;涵盖了HTML、CSS、JavaScript、DOM、Ajax、MVC、模块化、ES6、SPA、Webpack、Babel、Virtual DOM、响应式设计、移动优先设计、响应式图片、CSS 预处理器、后处理器、模块化、布局、盒模型、浮动、定位、…...

【链表OJ题 1】反转链表

目录 题目来源&#xff1a; 代码实现 1、方法一 1.1分析 2、方法二 2.1 分析 题目来源&#xff1a; 力扣 题目描述&#xff1a; 代码实现 1、方法一 struct ListNode* reverseList(struct ListNode* head) {struct ListNode* prev NULL, * cur head;while (cur){st…...

【华为OD机试真题】计算网络信号 (javaC++python)100%通过率 超详细代码注释

计算网络信号 知识点广搜数组 时间限制:1s 空间限制:256MB 限定语言:不限 题目描述: 网络信号经过传递会逐层衰减,且遇到阻隔物无法直接穿透,在此情况下需要计算某个位置的网络信号值,注意:网络信号可以绕过阴隔物array[m][n]的一维数组代表网格地图,array[i][j]=0代表i…...

Tomcat8和Tomcat9乱码问题

今天新开了一个小项目&#xff0c;我丢&#xff0c;乱码了&#xff0c;咋回事&#xff0c;好久没遇到过了&#xff0c;都忘了咋回事。今天必须记录下来&#xff0c;避免继续踩坑 Tomcat 8 不需要进行任何配置即可&#xff0c;它默认的是GBK&#xff0c;而win10 win7 默认的也是…...

Lesson13 IP协议

IP: 提供一种能力,将数据从A主机送到B主机的能力,但不一定会成功 主机 : 配有 IP 地址 , 但是不进行路由控制的设备 ; 路由器: 即配有 IP 地址 , 又能进行路由控制 ; 节点 : 主机和路由器的统称; 协议头格式 如何封装和解包: 定长报头 自描述字段 如何交付(分用) : 8…...

【每日一题Day192】LC1033移动石子直到连续 | 分类讨论 贪心

移动石子直到连续【LC1033】 三枚石子放置在数轴上&#xff0c;位置分别为 a&#xff0c;b&#xff0c;c。 每一回合&#xff0c;你可以从两端之一拿起一枚石子&#xff08;位置最大或最小&#xff09;&#xff0c;并将其放入两端之间的任一空闲位置。形式上&#xff0c;假设这…...

2023年软件测试常见面试题100%问必背全套教程

随着数字化时代的到来&#xff0c;软件测试越来越受到重视。在未来的几年里&#xff0c;软件测试将继续成为信息技术领域中的热门职业之一。如果你是一名正在寻找或准备进入软件测试行业的人&#xff0c;那么这套常见面试题全套教程对你来说会非常有用。 这套教程旨在帮助你了…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

k8s业务程序联调工具-KtConnect

概述 原理 工具作用是建立了一个从本地到集群的单向VPN&#xff0c;根据VPN原理&#xff0c;打通两个内网必然需要借助一个公共中继节点&#xff0c;ktconnect工具巧妙的利用k8s原生的portforward能力&#xff0c;简化了建立连接的过程&#xff0c;apiserver间接起到了中继节…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...