武忠祥老师每日一题||不定积分基础训练(六)

解法一:
求出 f ( x ) , 进而对 f ( x ) 进行积分。 求出f(x),进而对f(x)进行积分。 求出f(x),进而对f(x)进行积分。
令 ln x = t , 原式 f ( t ) = ln ( 1 + e t ) e t 令\ln x=t,原式f(t)=\frac{\ln (1+e^t)}{e^t} 令lnx=t,原式f(t)=etln(1+et)
则 ∫ f ( x ) d x = ∫ ln ( 1 + e x ) e x d x = ∫ ln ( 1 + e x ) e − x d x 则\int f(x)\,{\rm d}x=\int\frac{\ln(1+e^x)}{e^x}\,{\rm d}x\\=\int \ln (1+e^x)e^{-x}\,{\rm d}x 则∫f(x)dx=∫exln(1+ex)dx=∫ln(1+ex)e−xdx
= − ∫ ln ( 1 + e x ) d e − x =-\int\ln(1+e^x)\,{\rm d}{e^{-x}} =−∫ln(1+ex)de−x
= − ln ( 1 + e x ) e − x + ∫ e − x d ln ( 1 + e x ) =-\ln(1+e^x)e^{-x}+\int e^{-x}\,{\rm d}{\ln (1+e^x)} =−ln(1+ex)e−x+∫e−xdln(1+ex)
= − ln ( 1 + e x ) e − x + ∫ e − x 1 1 + e x × e x d x =-\ln(1+e^x)e^{-x}+\int e^{-x}\frac{1}{1+e^x}\times e^x\,{\rm d}x =−ln(1+ex)e−x+∫e−x1+ex1×exdx
= − ln ( 1 + e x ) e − x + ∫ 1 1 + e x d x =-\ln(1+e^x)e^{-x}+\int\frac{1}{1+e^x}\,{\rm d}x =−ln(1+ex)e−x+∫1+ex1dx
= − ln ( 1 + e x ) e − x + x − ln ( e x + 1 ) + C =-\ln(1+e^x)e^{-x}+x-\ln(e^x+1)+C =−ln(1+ex)e−x+x−ln(ex+1)+C
计算 ∫ 1 1 + e x d x : 计算\int\frac{1}{1+e^x}\,{\rm d}x: 计算∫1+ex1dx:
原式 = ∫ ( 1 + e x ) − e x 1 + e x d x 原式=\int \frac{(1+e^x)-e^x}{1+e^x}\,{\rm d}x 原式=∫1+ex(1+ex)−exdx
= ∫ ( 1 − e x 1 + e x ) d x =\int (1-\frac{e^x}{1+e^x})\,{\rm d}x =∫(1−1+exex)dx
= x − ∫ d ( e x + 1 ) 1 + e x =x-\int\frac{{\rm d}{(e^x+1)}}{1+e^x} =x−∫1+exd(ex+1)
= x − ln ( e x + 1 ) + C =x-\ln(e^x+1)+C =x−ln(ex+1)+C
解法二:
令 t = ln x ( x = e t ) ∫ f ( ln x ) d ln x 令t=\ln x(x=e^t)\int f(\ln x)\,{\rm d}{\ln x} 令t=lnx(x=et)∫f(lnx)dlnx
= ∫ ln ( 1 + x ) x × 1 x d x =\int \frac{\ln (1+x)}{x}\times \frac{1}{x}\,{\rm d}x =∫xln(1+x)×x1dx
= ∫ ln ( 1 + x ) x 2 d x =\int \frac{\ln (1+x)}{x^2}\,{\rm d}x =∫x2ln(1+x)dx
= − ∫ ln ( 1 + x ) d 1 x =-\int \ln(1+x)\,{\rm d}{\frac{1}{x}} =−∫ln(1+x)dx1
= − ln ( 1 + x ) x + ∫ 1 x × 1 x + 1 d x =-\frac{\ln (1+x)}{x}+\int\frac{1}{x}\times\frac{1}{x+1}\,{\rm d}x =−xln(1+x)+∫x1×x+11dx
= − ln ( 1 + x ) x + ln ∣ x x + 1 ∣ + C =-\frac{\ln (1+x)}{x}+\ln \lvert\frac{x}{x+1} \rvert+C =−xln(1+x)+ln∣x+1x∣+C
= − ln ( 1 + e t ) e t + ln ∣ e t e t + 1 ∣ + C =-\frac{\ln(1+e^t)}{e^t}+\ln \lvert \frac{e^t}{e^t+1}\rvert+C =−etln(1+et)+ln∣et+1et∣+C
由于积分变量为x,则所求为
− ln ( 1 + e x ) e x + ln ∣ e x e x + 1 ∣ + C -\frac{\ln(1+e^x)}{e^x}+\ln \lvert \frac{e^x}{e^x+1}\rvert+C −exln(1+ex)+ln∣ex+1ex∣+C
相关文章:
武忠祥老师每日一题||不定积分基础训练(六)
解法一: 求出 f ( x ) , 进而对 f ( x ) 进行积分。 求出f(x),进而对f(x)进行积分。 求出f(x),进而对f(x)进行积分。 令 ln x t , 原式 f ( t ) ln ( 1 e t ) e t 令\ln xt,原式f(t)\frac{\ln (1e^t)}{e^t} 令lnxt,原式f(t)etln(1et) 则 ∫ f ( x ) d…...
C语言结构体详解
结构体是C语言中的一种高级数据类型,它可以将不同的数据类型组合在一起,形成一个自定义的数据类型。结构体为程序员提供了一种组织数据的方式,它为程序开发带来了极大的灵活性和扩展性。 C语言中的结构体定义如下: struct 结构体…...
非盲去模糊简单介绍
文章目录 非盲去模糊简单介绍基于频域的方法1. Wiener滤波器2. 逆滤波器和半正定滤波器 基于空域的方法1. 均值滤波器2. 高斯滤波器3. 双边滤波器 基于偏微分的方法1. 非线性扩散滤波2. 全变分模型3. Laplacian正则化模型 振铃效应应用总结 非盲去模糊简单介绍 非盲去模糊是一…...
C语言动态内存管理与文件操作:打造高效通讯录
本篇博客会讲解如何使用C语言实现一个通讯录。实现通讯录的过程中,会大量用到C语言的知识点,包括但不限于:函数、自定义类型、指针、动态内存管理、文件操作,这些知识点在我的其他博客中都有讲解过,欢迎大家阅读&#…...
2001-2021年全国30省就业人数数据
2001-2021年全国30省就业人数数据/各省就业人数数据 1、时间:2001-2021年 2、范围:包括30个省市不含西藏 3、指标:就业人数 4、来源:各省NJ、社会统计NJ 5、缺失情况说明:无缺失 6、指标说明: 就业人…...
自然语言处理知识抽取(pkuseg、DDParser安装及使用)
一、分词简介 1.基本概念 分词是自然语言处理中的一个重要步骤,它可以帮助我们将文本分成一个个词语,以便更好地理解和分析文本。在计算机视觉、语音识别、机器翻译等领域,分词都扮演着重要的角色。 目前,常用的分词库包括 jie…...
Linux内核面试知识总结
Linux启动过程 1、主机加电自检,加载BIOS硬件信息 2、读取MBR引导文件 3、引导linux内核 4、启动第一个进程init(进程号永远为1) 5、进度相应的运行级别 6、运行终端,输入用户名和密码 linux系统缺省的运行级别 关机、单机…...
深度学习模型压缩与优化加速
1. 简介 深度学习(Deep Learning)因其计算复杂度或参数冗余,在一些场景和设备上限制了相应的模型部署,需要借助模型压缩、系统优化加速、异构计算等方法突破瓶颈,即分别在算法模型、计算图或算子优化以及硬件加速等层…...
Kali 更换源(超详细,附国内优质镜像源地址)
1.进入管理员下的控制台。 2. 输入密码后点击“授权”。 3.在控制台内输入下面的内容。 vim /etc/apt/sources.list 4.敲击回车后会进入下面的页面。 5.来到这个页面后的第一部是按键盘上的“i”键,左下角出现“插入”后说明操作正确。 6.使用“#”将原本的源给注释…...
Java版工程项目管理系统平台+java版企业工程系统源码+助力工程企业实现数字化管理
Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显示1…...
搜索引擎测试报告
文章目录 一、项目背景二、项目功能三、测试目的四、测试环境五、测试计划1、功能测试2、自动化测试 六、测试结果 一、项目背景 java官方文档是我们在学习java语言中不可或缺的权威资料。相比于各种网站的Java资料,官方文档无论是语言表达还是组织方式都要更加全面…...
4年的测试工程师,你遇到过自身瓶颈期吗?又是怎样度过的?
从毕业到现在已经快4年啦,一直软件测试行业混迹。我不是牛人,但是自我感觉还算是个合格的测试工程师,有必要写下自己将近4年来的经历,给自我以提示,给刚入行的朋友提供点参考。 貌似这一点适应的行业最广,…...
【Python零基础学习入门篇④】——第四节:Python的列表、元组、集合和字典
⬇️⬇️⬇️⬇️⬇️⬇️ ⭐⭐⭐Hello,大家好呀我是陈童学哦,一个普通大一在校生,请大家多多关照呀嘿嘿😁😊😘 🌟🌟🌟技术这条路固然很艰辛,但既已选择&…...
3.6 cache存储器
学习步骤: 我会采取以下几个步骤来学习Cache存储器: 确定学习目标:Cache存储器作为一种高速缓存存储器,通常用于提高计算机系统的运行效率。因此,我需要明确学习Cache存储器的目的,包括了解其原理、结构和…...
Ubuntu零基础安装
Ubuntu零基础安装 首先我们需要安装VM,再安装ubuntu。 1、安装VM 进入VM官网 VM官网地址 选择下载试用版 下载Windows版本 下载完成后,点击安装包进行安装 至此就安装完毕了。 桌面会出现VM的图标。 点击打开,弹出如下画面: …...
热门的常用 API 大全分享
天气/环境 空气质量查询: 查询国内3400个城市的整点观测,获取指定城市的整点观测空气质量。未来7天生活指数:支持国内3400个城市以及国际4万个城市的天气指数数据,包括晨练、洗车、穿衣(12项,有详细说明&a…...
利用粒子群算法设计无线传感器网络中的最优安全路由模型(Matlab代码实现)
目录 💥1 概述 📚2 运行结果 🎉3 参考文献 👨💻4 Matlab代码 💥1 概述 无线传感器网络(WSN)由数十个、数百个甚至数千个自主传感器组成。这些传感器以无线方式嵌入环境中&…...
2023年华东杯数学建模B 题 期货价格相关性问题-思路解析
题目背景: 许多金融标的都有其内在的关联,如何从量价数据找到这种关联是一个有趣的 问题。例如在万得的“煤焦钢矿”板块中,有螺纹钢、铁矿石、不锈钢、热轧卷板、 硅铁、焦煤、焦炭、锰硅、线材 9 个品种。这些品种有些是上下游关系&…...
SAP UI5 之Controls (控件) 笔记三
文章目录 官网 Walkthrough学习-Controls控件1.0.1 在index.html中使用class id 属性控制页面展示的属性1.0.2 我们在index.js文件中引入 text文本控制1.0.3打开浏览器查看结果 官网 Walkthrough学习-Controls控件 Controls控件 在前面展示在浏览器中的Hello World 是在Html …...
哈希表题目:设计地铁系统
文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题:设计地铁系统 出处:1396. 设计地铁系统 难度 6 级 题目描述 要求 一个地铁系统正在收集乘客在不同站之间的花费时间。他们在使用这些数…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
elementUI点击浏览table所选行数据查看文档
项目场景: table按照要求特定的数据变成按钮可以点击 解决方案: <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...
node.js的初步学习
那什么是node.js呢? 和JavaScript又是什么关系呢? node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说, 需要在node.js的环境上进行当JavaScript作为前端开发语言来说,需要在浏览器的环境上进行 Node.js 可…...
