当前位置: 首页 > news >正文

简单的无理函数的不定积分

前置知识:

  • 直接积分法
  • 有理函数的不定积分

简单的无理函数的不定积分

对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。

注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得到的有理式。

形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx R(x,cx+dax+b )dx的积分

求形如 ∫ R ( x , a x + b c x + d ) d x \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx R(x,cx+dax+b )dx的积分,其中 a d ≠ b c ad\neq bc ad=bc

t n = a x + b c x + d t^n=\dfrac{ax+b}{cx+d} tn=cx+dax+b,则 x = d t n − b a − c t n x=\dfrac{dt^n-b}{a-ct^n} x=actndtnb d x = a d − b c ( a − c t n ) 2 n t n − 1 d t dx=\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt dx=(actn)2adbcntn1dt,从而把原积分变换为有理函数的积分。

∫ R ( x , a x + b c x + d ) d x = ∫ R ( d t n − b a − c t n , t ) ⋅ a d − b c ( a − c t n ) 2 n t n − 1 d t \int R(x,\sqrt\dfrac{ax+b}{cx+d})dx=\int R(\dfrac{dt^n-b}{a-ct^n},t)\cdot\dfrac{ad-bc}{(a-ct^n)^2}nt^{n-1}dt R(x,cx+dax+b )dx=R(actndtnb,t)(actn)2adbcntn1dt

例题

计算 ∫ 1 ( x − 1 ) ( x + 1 ) 2 3 d x \int \dfrac{1}{\sqrt[3]{(x-1)(x+1)^2}}dx 3(x1)(x+1)2 1dx

解:
\qquad t = x + 1 x − 1 3 t=\sqrt[3]{\dfrac{x+1}{x-1}} t=3x1x+1 ,则 x = t 3 + 1 t 3 − 1 x=\dfrac{t^3+1}{t^3-1} x=t31t3+1 d x = − 6 t 2 ( t 3 − 1 ) 2 d t dx=-\dfrac{6t^2}{(t^3-1)^2}dt dx=(t31)26t2dt,于是

\qquad 原式 = ∫ x + 1 x − 1 3 ⋅ 1 x + 1 d x = − ∫ t ⋅ ( 1 2 ⋅ t 3 − 1 t 3 ) ⋅ 6 t 2 ( t 3 − 1 ) 2 d t =\int \sqrt[3]{\dfrac{x+1}{x-1}}\cdot\dfrac{1}{x+1}dx=-\int t\cdot(\dfrac 12\cdot\dfrac{t^3-1}{t^3})\cdot \dfrac{6t^2}{(t^3-1)^2}dt =3x1x+1 x+11dx=t(21t3t31)(t31)26t2dt

= − ∫ 3 t 3 − 1 d t = ∫ ( − 1 t − 1 + t + 2 t 2 + t + 1 ) d t \qquad\qquad =-\int \dfrac{3}{t^3-1}dt=\int(-\dfrac{1}{t-1}+\dfrac{t+2}{t^2+t+1})dt =t313dt=(t11+t2+t+1t+2)dt

= − ln ⁡ ∣ t − 1 ∣ + 1 2 ∣ t 2 + t + 1 ∣ + 3 arctan ⁡ ( 2 t + 1 3 ) + C \qquad\qquad =-\ln|t-1|+\dfrac 12|t^2+t+1|+\sqrt 3\arctan(\dfrac{2t+1}{\sqrt 3})+C =lnt1∣+21t2+t+1∣+3 arctan(3 2t+1)+C

= 1 2 ln ⁡ t 3 − 1 ( t − 1 ) 3 + 3 arctan ⁡ ( 2 t + 1 3 ) + C \qquad\qquad =\dfrac 12\ln\dfrac{t^3-1}{(t-1)^3}+\sqrt3\arctan(\dfrac{2t+1}{\sqrt 3})+C =21ln(t1)3t31+3 arctan(3 2t+1)+C

= 1 2 ln ⁡ ∣ 2 x − 1 ( x + 1 x − 1 − 1 ) 3 ∣ + 3 arctan ⁡ [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =\dfrac 12\ln|\dfrac{\frac{2}{x-1}}{(\sqrt{\frac{x+1}{x-1}}-1)^3}|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln(x1x+1 1)3x12+3 arctan[3 23x1x+1 +3 1]+C

= − 1 2 ln ⁡ ∣ x − 1 2 ∣ − 3 2 ln ⁡ ∣ x + 1 x − 1 3 − 1 ∣ + 3 arctan ⁡ [ 2 3 x + 1 x − 1 3 + 1 3 ] + C \qquad\qquad =-\dfrac12\ln|\dfrac{x-1}{2}|-\dfrac 32\ln|\sqrt[3]{\dfrac{x+1}{x-1}}-1|+\sqrt3\arctan[\dfrac{2}{\sqrt 3}\sqrt[3]{\dfrac{x+1}{x-1}}+\dfrac{1}{\sqrt 3}]+C =21ln2x123ln3x1x+1 1∣+3 arctan[3 23x1x+1 +3 1]+C


形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c )的积分

求形如 R ( x , a x 2 + b x + c ) R(x,\sqrt{ax^2+bx+c}) R(x,ax2+bx+c )的积分,其中 a ≠ 0 a\neq 0 a=0

这个无理式可以化为以下三种形式:

  • ∫ R ( x , ( x + p ) 2 + q 2 ) d x \int R(x,\sqrt{(x+p)^2+q^2})dx R(x,(x+p)2+q2 )dx
  • ∫ R ( x , ( x + p ) 2 − q 2 ) d x \int R(x,\sqrt{(x+p)^2-q^2})dx R(x,(x+p)2q2 )dx
  • ∫ R ( x , q 2 − ( x + p ) 2 ) d x \int R(x,\sqrt{q^2-(x+p)^2})dx R(x,q2(x+p)2 )dx

对这三种情况,可以由以下变换将它们化为三角有理式的积分:

  • x + p = q tan ⁡ t x+p=q\tan t x+p=qtant
  • x + p = q sec ⁡ t x+p=q\sec t x+p=qsect
  • x + p = q sin ⁡ t x+p=q\sin t x+p=qsint

例题

计算 ∫ x 2 − 2 x + 2 x − 1 d x \int \dfrac{\sqrt{x^2-2x+2}}{x-1}dx x1x22x+2 dx

解:
\qquad x − 1 = tan ⁡ t x-1=\tan t x1=tant,则 x 2 − 2 x + 2 = tan ⁡ 2 t + 1 = 1 cos ⁡ t \sqrt{x^2-2x+2}=\sqrt{\tan^2 t+1}=\dfrac{1}{\cos t} x22x+2 =tan2t+1 =cost1 1 cos ⁡ 2 t d t \dfrac{1}{\cos^2 t}dt cos2t1dt,于是

\qquad 原式 = 1 sin ⁡ t ⋅ 1 cos ⁡ 2 t d t = ∫ 1 ( cos ⁡ 2 t − 1 ) cos ⁡ 2 t ⋅ ( − sin ⁡ t ) d t =\dfrac{1}{\sin t}\cdot\dfrac{1}{\cos^2t}dt=\int\dfrac{1}{(\cos^2t-1)\cos^2 t}\cdot(-\sin t)dt =sint1cos2t1dt=(cos2t1)cos2t1(sint)dt

= ∫ ( 1 cos ⁡ 2 t − 1 − 1 cos ⁡ 2 t ) d ( cos ⁡ t ) = 1 2 ln ⁡ ∣ cos ⁡ t − 1 cos ⁡ t + 1 ∣ + 1 cos ⁡ t + C \qquad\qquad =\int(\dfrac{1}{\cos^2 t-1}-\dfrac{1}{\cos^2 t})d(\cos t)=\dfrac 12\ln|\dfrac{\cos t-1}{\cos t+1}|+\dfrac{1}{\cos t}+C =(cos2t11cos2t1)d(cost)=21lncost+1cost1+cost1+C

= 1 2 ln ⁡ ∣ ( cos ⁡ t − 1 ) 2 cos ⁡ t 2 − 1 ∣ + x 2 − 2 x + 2 + C = 1 2 ln ⁡ ( 1 − cos ⁡ t sin ⁡ t ) 2 + x 2 − 2 x + 2 + C \qquad\qquad =\dfrac 12\ln|\dfrac{(\cos t-1)^2}{\cos t^2-1}|+\sqrt{x^2-2x+2}+C=\dfrac 12\ln(\dfrac{1-\cos t}{\sin t})^2+\sqrt{x^2-2x+2}+C =21lncost21(cost1)2+x22x+2 +C=21ln(sint1cost)2+x22x+2 +C

= ln ⁡ ∣ 1 cos ⁡ t − 1 tan ⁡ x ∣ + x 2 − 2 x + 2 + C = ln ⁡ ∣ x 2 − 2 x + 2 − 1 x − 1 ∣ + x 2 − 2 x + 2 + C \qquad\qquad =\ln|\dfrac{\frac{1}{\cos t}-1}{\tan x}|+\sqrt{x^2-2x+2}+C=\ln|\dfrac{\sqrt{x^2-2x+2}-1}{x-1}|+\sqrt{x^2-2x+2}+C =lntanxcost11+x22x+2 +C=lnx1x22x+2 1+x22x+2 +C


总结

对于这些简单的无理函数的不定积分,要善于换元,将无理函数的不定积分转化为有理函数的不定积分,然后运用之前的知识来求解即可。

相关文章:

简单的无理函数的不定积分

前置知识: 直接积分法有理函数的不定积分 简单的无理函数的不定积分 对无理函数积分的基本方法就是通过换元将其化为有理函数的积分。下面讲讲几类无理函数积分的求法。 注: R ( u , v ) R(u,v) R(u,v)是由 u , v u,v u,v与常数经过有限次四则运算得…...

《国际联网安全保护管理办法》

1.基本信息 (1997年12月11日国务院批准 1997年12月16日公安部令第33号发布 根据2011年1月8日《国务院关于废止和修改部分行政法规的决定》修订) 2.办法内容 第一章 总 则 第一条为了加强对计算机信息网络国际联网的安全保护,维护公共…...

Redis常用命令

目录 一. 字符串string常用操作命令 二. 哈希hash常用操作命令 三. 列表list常用操作命令 四. 集合set常用操作命令 五. 有序集合sorted set常用操作命令 六. 通用命令 一. 字符串string常用操作命令 SET key value 设置指定key的值GET key 获取指定key的值 SETEX key…...

功能齐全的 DIY ESP32 智能手表设计之原理图讲解二

相关设计资料下载ESP32 智能手表带心率、指南针设计资料(包含Arduino源码+原理图+Gerber+3D文件).zip 目录 构建 ESP32 智能手表所需的组件 光照度传感器电路讲解...

烦恼的高考志愿

烦恼的高考志愿 题目背景 计算机竞赛小组的神牛 V 神终于结束了高考,然而作为班长的他还不能闲下来,班主任老 t 给了他一个艰巨的任务:帮同学找出最合理的大学填报方案。可是 v 神太忙了,身后还有一群小姑娘等着和他约会&#x…...

【地铁上的设计模式】--结构型模式:适配器模式

前面几篇文章我们学习了创建型模式,从本篇文章开始,我们将学习结构型模式。 什么是结构型模式 结构型模式是一种设计模式,它描述了如何将类或对象结合在一起形成更大的结构,以提供新的功能或实现更复杂的行为。结构型模式包括以…...

重大剧透:你不用ChatGPT,它砸你饭碗

早晨看到路透社报道,盖茨说,与其争论技术的未来,不如专注于如何更好地利用人工智能。 这可能是他对马斯克他们呼吁暂停AI研发6个月的一种回应吧。 有种古语说:天下大势,浩浩汤汤,顺之者昌,逆之者…...

状态机模式

状态模式 状态模式定义:使用场景角色定义1. State一抽象状态角色2. ConcreteState一-具体状态角色3. Context--环境角色 需求背景1. 订单状态抽象类2. 定义订单具体状态类并集成基类(抽象类)2.1 订单创建状态2.2 订单已支付状态2.3 订单已发货状态2.4 订…...

瑞吉外卖:后台系统登录功能

文章目录 需求分析代码开发创建实体类导入返回结果类Rcontroller、service与mapperlogin.html 需求分析 点击登录按钮后,浏览器以POST方式向employee/login提交username和password,服务器经过处理后向浏览器返回某种格式的数据,其中包含&…...

Linux拓展:链接库

一.说明 本篇博客介绍Linux操作系统下的链接库相关知识,由于相关概念已在Windows下链接库一文中介绍,本篇博客直接上操作。 二.静态链接库的创建和使用 1.提前看 这里主要介绍的是C语言的链接库技术,而在Linux下实现C语言程序&#xff0c…...

基于.Net开发的、支持多平台、多语言餐厅点餐系统

今天给大家推荐一套支持多平台、多语言版本的订单系统,适合餐厅、酒店等场景。 项目简介 这是基于.Net Framework开发的,支持手机、平板、PC等平台、多语言版本开源的点餐系统,非常适合餐厅、便利店、超市、酒店等,该系统基础功…...

Windows系统SSL/TLS安全协议介绍

支持安全加密的https底层使用的就是SSL/TLS,在发起https请求之前需要先建立TCP连接,之后再进行SSL/TLS协议协商,协商通过后才能发起https请求。本文将详细介绍SSL/TLS协议相关的内容。 之前在项目中就出现过客户端SSL/TLS版本过低,导致向服务器发起连接时被服务器拒绝的问题…...

ovs-vsctl 命令详解

ovs-vsctl 命令详解 网桥Bridge 创建 Bridge ovs-vsctl add-br br0 删除 Bridge ovs-vsctl del-br br0 列出 Bridge ovs-vsctl list-br 显示详情 ovs-vsctl show 端口 Port 添加端口 ovs-vsctl add-port br0 p1 其中br0 为上面添加的bridge p1可以是物理端口或者vN…...

具备“记忆”功能的VBA目录选择器

大家使用任意一款浏览器(例如:Chrome、Edge)下载文件时,如果【另存为】对话框选择C:\Download,那么下次再次使用【另存为】功能,对话框默认显示C:\Download,而不是根目录。 在VBA开发中调用目录…...

electron入门 | 手把手带electron项目初始化

Electron是一个基于Chromium和 Node.js,可以使用 HTML、CSS和JavaScript构建跨平台应用的技术框架,兼容 Mac、Windows 和 Linux。 目录 1.了解electron 2.开发环境 3.初始化 采坑插曲: 1.了解electron Electron 可以让你使用纯 JavaScrip…...

​力扣解法汇总2423. 删除字符使频率相同

目录链接: 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目: https://github.com/September26/java-algorithms 原题链接:力扣 描述: 给你一个下标从 0 开始的字符串 word ,字符串只包含小写英文字母。你…...

【超算/先进计算学习】日报8

目录 今日已完成任务列表遇到的问题及解决方案任务完成详细笔记阶段一阶段二阶段三阶段四 对自己的表现是否满意简述下次计划其他反馈 今日已完成任务列表 超算/高性能计算总结 遇到的问题及解决方案 无 任务完成详细笔记 阶段一 在学习的第一阶段,我们首先对需要…...

《LearnUE——基础指南:上篇—2》——GamePlay架构之Level和World

目录 听说世界是由多个Level组成的 1.2.1 引言 1.2.2 建造大陆(ULevel) 1.2.3构建世界(World) 1.2.4总结 听说世界是由多个Level组成的 1.2.1 引言 上小节谈到Actor和Component的关系,UE利用Actor的概念组成了世…...

IDEA部署tomcat项目

文章目录 只是部署一下看到这里即可war和war exploded的区别warwar exploded update的动作update resourcesupdate classes and resourcesredeployrestart server 解决了拿到了一个tomcat项目后如何将它部署到IDEA里面的问题。 file->open 选中pom.xml并open as project …...

IAM角色

Identity-based policy,它关联到特定的User/Role/Group上,指定这些主体能对哪些资源进行怎样的操作 Resource-based policy,它关联到具体的AWS资源上,指定哪些主体可以对这个资源做怎样的操作 aws受信任关系视为aws服务可以实现&a…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

<6>-MySQL表的增删查改

目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表&#xf…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...