当前位置: 首页 > news >正文

多维图像去噪方法研究

一、背景介绍

由于传感器技术的快速发展,高光谱(HS)遥感(RS)成像为飞机等数据采集设备远距离观测和分析地球表面提供了大量的空间和光谱信息,航天器和卫星。 HS RS 技术的最新进展甚至革命为实现各种应用的全部潜力提供了机会,同时面临着有效处理和分析大量 HS 采集数据的新挑战。对诸如彩色图像、彩色视频、多光谱图像和磁共振图像之类的多维图像进行滤波在有效性和效率方面都是具有挑战性的。利用图像的非局部自相似性(NLSS)特性和变换域的稀疏表示,基于块匹配和3D滤波(BM3D)的方法显示出强大的去噪性能。最近,提出了许多具有不同正则化项、变换和高级深度神经网络(DNN)架构的新方法来提高去噪质量。在本文中,广泛比较了60多种方法在合成和真实世界的数据集。引入了一个新的彩色图像和视频数据集进行基准测试,评估是从四个不同的角度,包括定量指标,视觉效果,人类评级和计算成本。综合实验证明:(i)BM3D系列用于各种去噪任务的有效性和效率,(ii)与张量算法相比,简单的基于矩阵的算法可以产生类似的结果,以及(iii)用合成高斯噪声训练的几个DNN模型在现实世界的彩色图像和视频数据集上显示出最先进的性能。

高光谱去噪

观察到的 HS 图像经常被混合噪声破坏,包括高斯噪声、椒盐噪声和死线噪声。 HS 图像的几种噪声类型如图 5 所示。HS 图像丰富的空间和光谱信息可以通过 LR 属性、稀疏表示、非局部相似性和总变差等不同的先验约束来提取。 HS去噪引入了不同的LR张量分解模型。因此,一种或两种其他先验约束与这些张量分解模型相结合。

HS图像复原示意图

1) LR 张量分解:

LR 张量分解方法分为两类:1) 基于分解的方法和 2) 基于秩最小化的方法。前者需要预定义等级值并更新分解因子。后者直接最小化张量秩并更新 LR 张量。

(1) Factorization-based approaches

HS图像去噪文献中使用了两个典型代表,即Tucker分解和CP分解。考虑了高斯噪声并提出了 LR 张量近似 (LRTA) 模型来完成 HS 图像去噪任务:

然而,Tucker 分解相关算法之前手动预定义所有模式的多个等级,这在现实中是棘手的。在等式中,Tucker分解约束很容易被其他张量分解替代,比如CP分解使用并行因子分析 (PARAFAC) 分解算法,仍然假设 HS 图像被高斯白噪声破坏。通过 rank-1 张量分解提出了 HS 图像降噪模型,该模型能够提取信号主导特征。但是,最小数量的rank-1因子被用作CP秩,需要较高的计算成本来计算。

(2) Rank minimization approaches

直接最小化张量秩,可以表述如下:

其中 rank(X ) 表示 HS 张量 X 的秩,包括不同的秩定义,如 Tucker 秩、CP 秩、TT 秩和 tubal 秩。由于上述秩最小化属于非凸问题,这些问题是 NP 难计算的。核范数一般用作非凸秩函数的凸代理提出了一种与管状秩相关的 TNN 来表征多线性数据的 3-D 结构复杂性。基于 TNN,提出了一种 LR 张量恢复 (LRTR) 模型来去除高斯噪声和稀疏噪声:

 [1] 将非凸对数代理函数应用于 TTN 以完成张量和(张量稳健主成分分析)TRPCA 任务。 [2] 沿三个方向探索了张量的 LR 特性,并提出了两个张量模型:一个三向 TNN (3DTNN) 和一个三向基于对数的TNN (3DLogTNN) 作为其凸和非凸松弛。尽管这些纯 LR 张量分解方法利用了 HS 图像的 LR 先验知识,但由于缺乏其他有用信息,它们很难有效抑制混合噪声。

[1]J. Xue, Y. Zhao, W. Liao, and J. C.-W. Chan, “Nonconvex tensor rank minimization and its applications to tensor recovery,” Inf. Sci., vol. 503, pp. 109–128, 2019.

[2]Y.-B. Zheng, T.-Z. Huang, X.-L. Zhao, T.-X. Jiang, T.-H. Ma, and T.-Y. Ji, “Mixed noise removal in hyperspectral image via low-fibered-rank regularization,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 1, pp. 734–749, 2020.

2)其他先验正则化LR张量分解:

各种类型的先验与LR张量分解模型相结合,以优化模型解决方案,包括非局部相似性、空间和光谱平滑度、空间稀疏性、子空间学习等

基于非局部 LR 张量的方法的流程图

华盛顿特区的空间平滑特性:(a) 原始波段,(b) 沿空间水平方向的梯度图像,(c) 沿空间垂直方向的梯度图像,(d) 沿光谱方向的梯度图像。

子空间表示的示意图

二、张量分解

自 1980 年代以来,HS RS 成像逐渐成为 RS 领域最重要的成就之一 。与最初的单波段全色图像、三波段彩色 RGB 图像和多波段多光谱 (MS) 图像不同,HS 图像包含数百个窄而连续的光谱波段,这是由光谱成像的发展推动的设备和提高光谱分辨率。 HS 光谱的较宽部分可以从紫外线扫描,延伸到可见光谱,并最终到达近红外或短波红外 。 HS 图像的每个像素都对应一个光谱特征,反映了被观察物体的电磁特性。这使得能够以更准确的方式识别和区分底层对象,特别是一些在单波段或多波段 RS 图像(如全色、RGB、MS)中具有相似属性的对象。因此,HS图像丰富的空间和光谱信息极大地提高了地球观测的感知能力,这使得HS RS技术在精准农业(例如监测农作物的生长和健康)等领域发挥着至关重要的作用,太空探索(例如,寻找其他行星上的生命迹象)、污染监测(例如,检测海洋漏油)和军事应用(例如,识别军事目标)。在过去的十年中,在数据采集后处理和分析 HS RS 数据方面付出了巨大的努力。初始 HS 数据处理考虑每个波段的灰度图像或每个像素的光谱特征。一方面,每个HS光谱波段被视为一个灰度图像,传统的二维图像处理算法直接逐波段引入[3],[4]。另一方面,具有相似可见特性(例如颜色、纹理)的光谱特征可用于识别材料 。此外,采用广泛的基于低秩 (LR) 矩阵的方法来探索光谱通道的高度相关性,假设展开的 HS 矩阵具有低秩 [5]-[7]。给定大小为 h×v×z 的 HS 图像,展开的 HS 矩阵 (hv×z) 的恢复通常需要奇异值分解 (SVD),这导致高的计算成本。与矩阵形式相比,张量分解以可容忍的计算复杂度增量实现了出色的性能。然而,这些传统的 LR 模型将每个光谱带重塑为矢量,导致 HS 图像固有的空间光谱完整性遭到破坏。张量分解以可容忍的计算复杂度增量获得了优异的性能。然而,这些传统的LR模型将每个光谱波段重塑为一个向量,导致HS图像固有的空谱完备性遭到破坏。为了缩小HS任务与先进数据处理技术之间的差距,需要确定HS图像的正确解释和智能模型的适当选择。当HS图像建模为三阶张量时,同时考虑二维空间信息和一维光谱信息。

[3]M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736–3745, 2006.

[4] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenom., vol. 60, no. 1, pp. 259–268, 1992.

[5]H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral image restoration using low-rank matrix recovery,” IEEE Trans. on Geosci. Remote Sens., vol. 52, no. 8, pp. 4729–4743, Aug. 2014.

[6] J. Peng, W. Sun, H.-C. Li, W. Li, X. Meng, C. Ge, and Q. Du, “Lowrank and sparse representation for hyperspectral image processing: A review,” IEEE Geosc. Remote Sens. Mag., pp. 2–35, 2021.

[7] E. J. Candes and T. Tao, “The power of convex relaxation: Near-optimal matrix completion,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 20532080, 2010.

张量分解起源于Hitchcock在1927年的工作[ 8 ],涉及众多学科,但最近10年在信号处理、机器学习、数据挖掘和融合等领域蓬勃发展[ 9 ] ~ [ 11 ]。早期的综述集中于两种常见的分解方式:Tucker分解和CANDECOMP /平行因子分析算法( CP )分解。2008年,这两种分解首次被引入到HS复原任务中,用于去除高斯噪声[ 12 ]、[ 13 ]。基于张量分解的数学模型避免了对原始维度的转换,也在一定程度上增强了问题建模的可解释性和完备性。考虑HS RS中不同类型的先验知识(例如,空间域的非局部相似性、空间和光谱平滑性),并将其纳入张量分解框架。

[8]F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,” J. Math. Phys., vol. 6, no. 1-4, pp. 164–189, 1927.

[9] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[10] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors for data mining and data fusion: Models, applications, and scalable algorithms,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 2, oct 2016.

[11] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos, “Tensor decomposition for signal processing and machine learning,” IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3551–3582, 2017.

[12] N. Renard, S. Bourennane, and J. Blanc-Talon, “Denoising and dimensionality reduction using multilinear tools for hyperspectral images,” IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 138–142, 2008.

[13] X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the parafac model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3717–3724, Oct. 2012.

用于 HS 数据处理的基于主要张量分解的方法的分类

三阶张量的六个张量分解:(a) Tucker 分解,(b) CP 分解,(c) BT 分解,(d) t-SVD,(e) TT 分解,(f) TR 分解

Tucker decomposition[14]        

N 阶张量的 Tucker 分解定义为:

表示核心张量表示因子矩阵,Tucker 秩由表示。

 CP decomposition [14]           

N阶张量的CP分解定义为:

 

 是非零权重参数,表示具有的秩一张量。表示为CP秩是秩一张量的总和。

 BT decomposition[15]

 三阶张量的 BT 分解定义为

 

 

每个R分量张量可以通过秩(Lh,Lv,Lz)Tucker分解表示。 BT分解可以看作是Tucker和CP分解的组合。

Tensor Nuclear Norm (TNN)[16]

的t-SVD,TNN 为 X 的奇异值之和:

 

也可以表示为 的所有frontal slices的核范数之和

 

t-SVD[16]

可以被因式分解为,这里的是正交张量,

 是对角张量

 t-SVD算法:

 TT decomposition[17]

N阶的张量的TT分解由核心,TT分解定义为,张量的每个条目表示为:

TR decomposition[18]

TR 分解的目的是通过循环形式的三阶张量序列的多重线性乘积来表示高阶 X,三阶张量被命名为 TR 因子

。在这种情况下,TR分解与因子的逐元素关系可以写成:

[14] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[15] L. De Lathauwer, “Decompositions of a higher-order tensor in block terms—part ii: Definitions and uniqueness,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1033–1066, 2008.

[16] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex optimization,” in Proc. CVPR, 2016, pp. 5249–5257.

[17] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput., vol. 33, no. 5, pp. 2295–2317, 2011.

[18] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring decomposition,” arXiv preprint arXiv:1606.05535, 2016.

HS 技术完成了对近乎连续光谱带的采集、利用和分析,并渗透到广泛的实际应用中,越来越受到全球研究人员的关注。在 HS 数据处理中,采集的数据往往涉及大规模和高阶属性。不断增长的 3-D HS 数据量对处理算法提出了更高的要求,以取代基于 2-D 矩阵的方法。张量分解在问题建模和方法论方面都起着至关重要的作用,使得利用每个完整的一维光谱特征的光谱信息和每个完整的二维空间图像的空间结构成为可能。

三、DNN方法

图像去噪的最新发展主要是由深度神经网络 (DNN) 的应用带来的,DNN 方法通常采用由外部先验和数据集指导的监督训练策略,以最小化预测图像和干净图像之间的距离 L

 其中 Xi 和 Yi 是干净/噪声图像(patch)对,具有参数 θ 的 Fθ 是将噪声补丁映射到预测的干净补丁的非线性函数,并且 Ψ(·) 表示某些正则化器 [19],[20]。早期方法 [21]、[22] 使用已知的移位模糊函数和加权因子, [23] 表明普通多层感知器 (MLP) 网络能够在某些噪声水平下与 BM3D 竞争。为了提取潜在特征并利用 NLSS 先验,更常用的模型是卷积神经网络 (CNN) [24],它适用于多维数据处理 [25]-[28] 具有灵活大小的卷积滤波器和局部感受野。卷积运算首先应用于 [29] 中的图像去噪,下图说明了一个简单的具有三个卷积层的 CNN 去噪框架。

 

具有三个卷积层的简单 CNN 去噪框架的图示

 由于 CNN 的简单性和有效性,它被不同的 DNN 去噪算法广泛采用,并且基于 CNN 的网络的变化非常广泛。例如,对于彩色图像,去噪 CNN (DnCNN) [30] 将批量归一化 (BN) [31]、整流线性单元 (ReLU) [32] 和残差学习 [33] 结合到 CNN 模型中。生成对抗网络 (GAN) 盲降噪器 (GCBD) [34] 引入 GAN [35] 来解决未配对噪声图像的问题。最近,图卷积去噪网络(GCDN)在[36]中被提出来捕获自相似信息。对于彩色视频,VNLNet [37] 提出了一种将视频自相似性与 CNN 相结合的新方法。 FastDVDNet [38] 无需昂贵的运动补偿阶段即可实现实时视频降噪。对于 MSI,HSID-CNN [39] 和 HSI-sDeCNN [40] 将 MRI 数据的空间和光谱信息同时分配给 CNN。 3D 准循环神经网络 (QRNN3D) [41] 利用 3D 卷积来提取 MSI 数据的结构空间-光谱相关性,并使用准循环池函数来捕获沿频谱的全局相关性。对于 MRI 去噪,多通道 DnCNN (MCDnCNN) [42] 网络扩展 DnCNN 以处理 3D 体积数据,并且预过滤的基于旋转不变块的 CNN (PRI-PB-CNN) [43] 使用 MRI 数据训练 CNN 模型通过 PRI 非局部主成分分析 (PRI-NLPCA) [44] 进行预过滤。

尽管 DNN 方法有效,但它们可能是双重武器,具有三大优势,也面临着同样的挑战。首先,DNN 方法能够利用外部信息来指导训练过程,因此可能不会局限于传统降噪器的理论和实践范围 [45]。然而,DNN 方法在很大程度上依赖于训练数据集的质量,以及某些先验信息,例如 ISO、快门速度和相机品牌,这些信息在实践中并不总是可用。其次,DNN 方法可以利用先进的 GPU 设备进行加速,并针对某些任务实现实时去噪 [46]、[47]。但普通用户和研究人员可能无法获得昂贵的计算资源。第三,DNN 方法的深层、灵活和复杂的结构能够提取噪声图像的潜在特征,但与只需要存储四个小的预定义变换矩阵的 CBM3D 的实现相比,具有数百万个的复杂网络参数可能会大大增加存储成本。

[19] S. Lefkimmiatis, “Non-local color image denoising with convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3587–3596.

[20] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 94469454.

[21] Y. Zhou, R. Chellappa, and B. Jenkins, “A novel approach to image restoration based on a neural network,” in IEEE International Conference on Neural Networks, vol. 4, 1987, pp. 269–276.

[22] Y.-W. Chiang and B. Sullivan, “Multi-frame image restoration using a neural network,” in Proc. Midwest Symp. Circuits Syst. IEEE, 1989, pp. 744–747.

[23] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can plain neural networks compete with bm3d?” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2392–2399.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[25] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 221–231, 2012.

[26] P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. De Vries, M. J. Benders, and I. Iˇ sgum, “Automatic segmentation of mr brain images with a convolutional neural network,” IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1252–1261, 2016.

[27] W. Shi, J. Caballero, F. Husz ́ ar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1874–1883.

[28] L. Windrim, A. Melkumyan, R. J. Murphy, A. Chlingaryan, and R. Ramakrishnan, “Pretraining for hyperspectral convolutional neural network classification,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 5, pp. 2798–2810, 2018.

[29] V. Jain and S. Seung, “Natural image denoising with convolutional networks,” in Proc. Advances Neural Inf. Process. Syst., 2009, pp. 769–776.

[30] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 31423155, 2017.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate shift,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 448–456.

[32] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proc. Int. Conf. Mach. Learn., 2010, pp. 807–814.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.

[34] J. Chen, J. Chen, H. Chao, and M. Yang, “Image blind denoising with generative adversarial network based noise modeling,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 31553164.

[35] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[36] D. Valsesia, G. Fracastoro, and E. Magli, “Deep graphconvolutional image denoising,” IEEE Trans. Image Process., vol. 29, pp. 8226–8237, 2020.

[37] A. Davy, T. Ehret, J.-M. Morel, P. Arias, and G. Facciolo, “Nonlocal video denoising by cnn,” arXiv preprint arXiv:1811.12758, 2018.

[38] M. Tassano, J. Delon, and T. Veit, “Fastdvdnet: Towards real-time deep video denoising without flow estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., June 2020.

[39] Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 1205–1218, 2018.

[40] A. Maffei, J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone, and A. Plaza, “A single model cnn for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2516–2529, 2019.

[41] K. Wei, Y. Fu, and H. Huang, “3-d quasi-recurrent neural network for hyperspectral image denoising,” IEEE Trans. Neural Netw. Learn. Syst., 2020.

[42] D. Jiang, W. Dou, L. Vosters, X. Xu, Y. Sun, and T. Tan, “Denoising of 3d magnetic resonance images with multi-channel residual learning of convolutional neural network,” Jpn. J. Radiol., vol. 36, no. 9, pp. 566–574, 2018.

[43] J. V. Manj  ́ on and P. Coup ́ e, “Mri denoising using deep learning,” in Patch-Based Techniques in Medical Imaging, 2018, pp. 12–19.

[44] J. V. Manj  ́ on, P. Coup ́ e, and A. Buades, “Mri noise estimation and denoising using non-local pca,” Med. Image Anal., vol. 22, no. 1, pp. 35–47, 2015.

[45] P. Chatterjee and P. Milanfar, “Is denoising dead?” IEEE Trans. Image Process., vol. 19, no. 4, pp. 895–911, 2009.

[46] M. Tassano, J. Delon, and T. Veit, “Fastdvdnet: Towards real-time deep video denoising without flow estimation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., June 2020.

[47] X. Zhang and R. Wu, “Fast depth image denoising and enhancement using a deep convolutional network,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2016, pp. 2499–2503.

具有不同噪声建模技术和应用的多维图像数据的相关传统降噪器。 “CI”:彩色图像,“CV”:彩色视频,“MSI”:多光谱成像,“HSI”:高光谱成像,“MRI”:磁共振成像。

具有不同噪声建模技术和应用的多维图像数据的相关DNN去噪方法。 “CI”:彩色图像,“CV”:彩色视频,“MSI”:多光谱成像,“HSI”:高光谱成像,“MRI”:磁共振成像。

[43] D. L. Donoho, “De-noising by soft-thresholding,” IEEE Trans. Inf. Theory, vol. 41, no. 3, pp. 613–627, 1995.

[44] K.-q. Huang, Z.-y. Wu, G. S. Fung, and F. H. Chan, “Color image denoising with wavelet thresholding based on human visual system model,” Signal Process.: Image Commun., vol. 20, no. 2, pp. 115–127, 2005.

[45] H. Othman and S.-E. Qian, “Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 397–408, 2006.

[46] L. P. Yaroslavsky, “Local adaptive image restoration and enhancement with the use of dft and dct in a running window,” in Proc. SPIE, vol. 2825, 1996, pp. 2–13.

[47] A. Foi, V. Katkovnik, and K. Egiazarian, “Pointwise shapeadaptive dct for high-quality denoising and deblocking of grayscale and color images,” IEEE Trans. Image Process., vol. 16, no. 5, pp. 1395–1411, 2007.

[48] J. Dai, O. C. Au, L. Fang, C. Pang, F. Zou, and J. Li, “Multichannel nonlocal means fusion for color image denoising,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 11, pp. 1873–1886, 2013.

[49] M. Elad and M. Aharon, “Image denoising via sparse and redundant representations over learned dictionaries,” IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736–3745, 2006.

[50] J. Mairal, M. Elad, and G. Sapiro, “Sparse representation for color image restoration,” IEEE Trans. Image Process., vol. 17, no. 1, pp. 53–69, 2007.

[51] Y. Fu, A. Lam, I. Sato, and Y. Sato, “Adaptive spatial-spectral dictionary learning for hyperspectral image denoising,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 343–351.

[52] C. Liu and W. T. Freeman, “A high-quality video denoising algorithm based on reliable motion estimation,” in Proc. Eur. Conf. Comput. Vis., 2010, pp. 706–719.

[53] L. Zhang, W. Dong, D. Zhang, and G. Shi, “Two-stage image denoising by principal component analysis with local pixel grouping,” Pattern Recognit., vol. 43, no. 4, pp. 1531–1549, 2010.

[54] W. Dong, G. Shi, and X. Li, “Nonlocal image restoration with bilateral variance estimation: a low-rank approach,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 700–711, 2012.

[55] A. Phophalia and S. K. Mitra, “3d mr image denoising using rough set and kernel pca method,” Magn. Reson. Imaging, vol. 36, pp. 135–145, 2017.

[56] D. Zoran and Y. Weiss, “From learning models of natural image patches to whole image restoration,” in Proc. IEEE Int. Conf. Comput. Vis., 2011, pp. 479–486.

[57] S. Hurault, T. Ehret, and P. Arias, “Epll: an image denoising method using a gaussian mixture model learned on a large set of patches,” Image Processing On Line, vol. 8, pp. 465–489, 2018.

[58] H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral image restoration using low-rank matrix recovery,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4729–4743, 2013.

[59] J. Xu, L. Zhang, and D. Zhang, “External prior guided internal prior learning for real-world noisy image denoising,” IEEE Trans. Image Process., vol. 27, no. 6, pp. 2996–3010, 2018.

[60] A. Buades, J.-L. Lisani, and M. Miladinovi ́ c, “Patch-based video denoising with optical flow estimation,” IEEE Trans. Image Process., vol. 25, no. 6, pp. 2573–2586, 2016.

[61] M. Rizkinia, T. Baba, K. Shirai, and M. Okuda, “Local spectral component decomposition for multi-channel image denoising,” IEEE Trans. Image Process., vol. 25, no. 7, pp. 3208–3218, 2016.

[62] S. Gu, L. Zhang, W. Zuo, and X. Feng, “Weighted nuclear norm minimization with application to image denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 2862–2869.

[63] J. Xu, L. Zhang, D. Zhang, and X. Feng, “Multi-channel weighted nuclear norm minimization for real color image denoising,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 1096–1104.

[64] J. Xu, L. Zhang, and D. Zhang, “A trilateral weighted sparse coding scheme for real-world image denoising,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 20–36.

[65] P. Arias and J.-M. Morel, “Video denoising via empirical bayesian estimation of space-time patches,” J. Math. Imag. Vis., vol. 60, no. 1, pp. 70–93, 2018.

[66] Y. Hou, J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao, “Nlh: A blind pixel-level non-local method for real-world image denoising,” IEEE Trans. Image Process., vol. 29, pp. 5121–5135, 2020.

[67] R. H. Chan, C.-W. Ho, and M. Nikolova, “Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization,” IEEE Trans. Image Process., vol. 14, no. 10, pp. 1479–1485, 2005.

[68] M. Lebrun, M. Colom, and J.-M. Morel, “Multiscale image blind denoising,” IEEE Trans. Image Process., vol. 24, no. 10, pp. 31493161, 2015.

[69] L. Zhuang and J. M. Bioucas-Dias, “Fast hyperspectral image denoising and inpainting based on low-rank and sparse representations,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 3, pp. 730–742, 2018.

[70] J. V. Manj  ́ on, P. Coup ́ e, A. Buades, D. L. Collins, and M. Robles, “New methods for mri denoising based on sparseness and selfsimilarity,” Med. Image Anal., vol. 16, no. 1, pp. 18–27, 2012.

[71] P. Coup ́ e, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot, “An optimized blockwise nonlocal means denoising filter for 3d magnetic resonance images,” IEEE Trans. Med. Imag., vol. 27, no. 4, pp. 425–441, 2008.

[72] J. V. Manj  ́ on, P. Coup ́ e, L. Mart ́ı-Bonmat ́ı, D. L. Collins, and M. Robles, “Adaptive non-local means denoising of mr images with spatially varying noise levels,” J. Magn. Reson. Imag., vol. 31, no. 1, pp. 192–203, 2010.

[73] S. Aja-Fern ́ andez, C. Alberola-L  ́ opez, and C.-F. Westin, “Noise and signal estimation in magnitude mri and rician distributed images: a lmmse approach,” IEEE Trans. Image Process., vol. 17, no. 8, pp. 1383–1398, 2008.

[74] J. V. Manj  ́ on, P. Coup ́ e, and A. Buades, “Mri noise estimation and denoising using non-local pca,” Med. Image Anal., vol. 22, no. 1, pp. 35–47, 2015.

[75] N. Renard, S. Bourennane, and J. Blanc-Talon, “Denoising and dimensionality reduction using multilinear tools for hyperspectral images,” IEEE Geosci. Remote. Sens. Lett., vol. 5, no. 2, pp. 138–142, 2008.

[76] X. Liu, S. Bourennane, and C. Fossati, “Denoising of hyperspectral images using the parafac model and statistical performance analysis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3717–3724, 2012.

[77] A. Rajwade, A. Rangarajan, and A. Banerjee, “Image denoising using the higher order singular value decomposition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 4, pp. 849–862, 2012.

[78] X. Zhang, Z. Xu, N. Jia, W. Yang, Q. Feng, W. Chen, and Y. Feng, “Denoising of 3d magnetic resonance images by using higherorder singular value decomposition,” Med. Image Anal., vol. 19, no. 1, pp. 75–86, 2015.

[79] X. Zhang, J. Peng, M. Xu, W. Yang, Z. Zhang, H. Guo, W. Chen, Q. Feng, E. X. Wu, and Y. Feng, “Denoise diffusion-weighted images using higher-order singular value decomposition,” Neuroimage, vol. 156, pp. 128–145, 2017.

[80] Y. Peng, D. Meng, Z. Xu, C. Gao, Y. Yang, and B. Zhang, “Decomposable nonlocal tensor dictionary learning for multispectral image denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 2949–2956.

[81] Z. Zhang and S. Aeron, “Denoising and completion of 3d data via multidimensional dictionary learning,” in Proc. 25th Int. Joint Conf. Artif. Intell, 2016, pp. 2371–2377.

[82] W. He, H. Zhang, L. Zhang, and H. Shen, “Total-variationregularized low-rank matrix factorization for hyperspectral image restoration,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 178–188, 2015.

[83] Q. Xie, Q. Zhao, D. Meng, Z. Xu, S. Gu, W. Zuo, and L. Zhang, “Multispectral images denoising by intrinsic tensor sparsity regularization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1692–1700.

[84] Y. Chang, L. Yan, and S. Zhong, “Hyper-laplacian regularized unidirectional low-rank tensor recovery for multispectral image denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4260–4268.

[85] W. He, H. Zhang, H. Shen, and L. Zhang, “Hyperspectral image denoising using local low-rank matrix recovery and global spatial–spectral total variation,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 11, no. 3, pp. 713–729, 2018.

[86] Y. Wu, L. Fang, and S. Li, “Weighted tensor rank-1 decomposition for nonlocal image denoising,” IEEE Trans. Image Process., vol. 28, no. 6, pp. 2719–2730, 2018.

[87] H. Lv and R. Wang, “Denoising 3d magnetic resonance images based on low-rank tensor approximation with adaptive multirank estimation,” IEEE Access, vol. 7, pp. 85 995–86 003, 2019.

[88] Z. Kong, L. Han, X. Liu, and X. Yang, “A new 4-d nonlocal transform-domain filter for 3-d magnetic resonance images denoising,” IEEE Trans. Med. Imag., vol. 37, no. 4, pp. 941–954, 2017.

[89] W. He, Q. Yao, C. Li, N. Yokoya, and Q. Zhao, “Non-local meets global: An integrated paradigm for hyperspectral denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 68616870.

[90] X. Gong, W. Chen, and J. Chen, “A low-rank tensor dictionary learning method for hyperspectral image denoising,” IEEE Trans. Signal Process., vol. 68, pp. 1168–1180, 2020.

[91] W. Dong, G. Li, G. Shi, X. Li, and Y. Ma, “Low-rank tensor approximation with laplacian scale mixture modeling for multiframe image denoising,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 442–449.

[105] H. C. Burger, C. J. Schuler, and S. Harmeling, “Image denoising: Can plain neural networks compete with bm3d?” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 2392–2399.

[106] Y. Chen and T. Pock, “Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1256–1272, 2016.

[107] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising,” IEEE Trans. Image Process., vol. 26, no. 7, pp. 31423155, 2017.

[108] D. Jiang, W. Dou, L. Vosters, X. Xu, Y. Sun, and T. Tan, “Denoising of 3d magnetic resonance images with multi-channel residual learning of convolutional neural network,” Jpn. J. Radiol., vol. 36, no. 9, pp. 566–574, 2018.

[109] S. Lefkimmiatis, “Non-local color image denoising with convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 3587–3596.

[110] ——, “Universal denoising networks : A novel cnn architecture for image denoising,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 3204–3213.

[111] K. Zhang, W. Zuo, and L. Zhang, “Ffdnet: Toward a fast and flexible solution for cnn-based image denoising,” IEEE Trans. Image Process., vol. 27, no. 9, pp. 4608–4622, 2018.

[112] Q. Yuan, Q. Zhang, J. Li, H. Shen, and L. Zhang, “Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 1205–1218, 2018.

[113] A. Maffei, J. M. Haut, M. E. Paoletti, J. Plaza, L. Bruzzone, and A. Plaza, “A single model cnn for hyperspectral image denoising,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2516–2529, 2019.

[114] M. Claus and J. van Gemert, “Videnn: Deep blind video denoising,” in Proc. Conf. Comput. Vis. Pattern Recognit. Workshops, 2019, pp. 1–10.

[115] M. Chang, Q. Li, H. Feng, and Z. Xu, “Spatial-adaptive network for single image denoising,” arXiv preprint arXiv:2001.10291, 2020.

[116] G. Vaksman, M. Elad, and P. Milanfar, “Lidia: Lightweight learned image denoising with instance adaptation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, June 2020.

[117] Y. Zhao, D. Zhai, J. Jiang, and X. Liu, “Adrn: Attention-based deep residual network for hyperspectral image denoising,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2020, pp. 26682672.

[118] Y. Chang, L. Yan, H. Fang, S. Zhong, and W. Liao, “Hsi-denet: Hyperspectral image restoration via convolutional neural network,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 2, pp. 667–682, 2018.

[119] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and T. Aila, “Noise2noise: Learning image restoration without clean data,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 2965–2974.

[120] Z. Yue, H. Yong, Q. Zhao, D. Meng, and L. Zhang, “Variational denoising network: Toward blind noise modeling and removal,” in Proc. Advances Neural Inf. Process. Syst., 2019, pp. 1690–1701.

[121] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional blind denoising of real photographs,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2019, pp. 1712–1722.

[122] J. V. Manj  ́ on and P. Coup ́ e, “Mri denoising using deep learning,” in Patch-Based Techniques in Medical Imaging, 2018, pp. 12–19.

[123] A. Abbasi, A. Monadjemi, L. Fang, H. Rabbani, and Y. Zhang, “Three-dimensional optical coherence tomography image denoising through multi-input fully-convolutional networks,” Comput. Biol. Med., vol. 108, pp. 1–8, 2019.

[124] S. Yu, B. Park, and J. Jeong, “Deep iterative down-up cnn for image denoising,” in Proc. Conf. Comput. Vis. Pattern Recognit. Workshops, 2019.

[125] Y. Song, Y. Zhu, and X. Du, “Dynamic residual dense network for image denoising,” Sensors, vol. 19, no. 17, p. 3809, 2019.

[126] S. Gu, Y. Li, L. V. Gool, and R. Timofte, “Self-guided network for fast image denoising,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 2511–2520.

[127] C. Chen, Z. Xiong, X. Tian, Z.-J. Zha, and F. Wu, “Real-world image denoising with deep boosting,” IEEE Trans. Pattern Anal. Mach. Intell., 2019.

[128] S. Anwar and N. Barnes, “Real image denoising with feature attention,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 31553164.

[129] Y. Kim, J. W. Soh, G. Y. Park, and N. I. Cho, “Transfer learning from synthetic to real-noise denoising with adaptive instance normalization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 3482–3492.

[130] Y. Quan, M. Chen, T. Pang, and H. Ji, “Self2self with dropout: Learning self-supervised denoising from single image,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 1890–1898.

[131] K. Wei, Y. Fu, and H. Huang, “3-d quasi-recurrent neural network for hyperspectral image denoising,” IEEE Trans. Neural Netw. Learn. Syst., 2020.

[132] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, “Cycleisp: Real image restoration via improved data synthesis,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020, pp. 2696–2705.

[133] Z. Yue, Q. Zhao, L. Zhang, and D. Meng, “Dual adversarial network: Toward real-world noise removal and noise generation,” arXiv preprint arXiv:2007.05946, 2020.

[134] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, “Learning enriched features for real image restoration and enhancement,” in Proc. Eur. Conf. Comput. Vis., 2020.

[135] D. Valsesia, G. Fracastoro, and E. Magli, “Deep graphconvolutional image denoising,” IEEE Trans. Image Process., vol. 29, pp. 8226–8237, 2020.

[136] J. Chen, J. Chen, H. Chao, and M. Yang, “Image blind denoising with generative adversarial network based noise modeling,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 31553164.

[137] H. Yan, X. Chen, V. Y. Tan, W. Yang, J. Wu, and J. Feng, “Unsupervised image noise modeling with self-consistent gan,” arXiv preprint arXiv:1906.05762, 2019.

[138] R. A. Yeh, T. Y. Lim, C. Chen, A. G. Schwing, M. HasegawaJohnson, and M. Do, “Image restoration with deep generative models,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2018, pp. 6772–6776.

[139] K. Lin, T. H. Li, S. Liu, and G. Li, “Real photographs denoising with noise domain adaptation and attentive generative adversarial network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, June 2019.

 真实彩色图像数据集的平均 PSNR、SSIM 值和计算时间(秒)。平均时间是根据 PolyU 数据集计算的,“N/A”表示模型无法处理特定尺寸的图像。最佳结果(不包括 CBM3D 最佳结果)以黑色粗体显示。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

相关文章:

多维图像去噪方法研究

一、背景介绍 由于传感器技术的快速发展,高光谱(HS)遥感(RS)成像为飞机等数据采集设备远距离观测和分析地球表面提供了大量的空间和光谱信息,航天器和卫星。 HS RS 技术的最新进展甚至革命为实现各种应用的…...

托福口语考察内容和形式

首先我们来简单介绍一下托福口语考试的构成和task1的任务形式。 目录 TOEFL Speaking Test Format Independent Task 1 Task 1 Test Format Task 1 Testing Interface(考试界面)​ Task 1 Question Type...

【地铁上的设计模式】--结构型模式:代理模式

什么是代理模式 代理模式是一种结构型设计模式,通过代理对象控制对原始对象的访问。代理对象充当客户端和实际对象之间的中介,隐藏了实际对象的复杂性,并提供了一些额外的控制。 在软件系统中,代理模式可以有多种应用。例如&…...

Oracle 体系结构

文章目录 Oracle体系结构Oracle的内存结构Oracle的进程结构服务器进程后台进程可选后台进程 物理存储结构逻辑存储结构 概念: Oracle server由Oracle instance和Oracle database组成,Oracle instance由后台进程和共享内存组成,Oracle的实例包…...

java手写日历系统(亲测)

package com.test.test02;import java.util.Calendar; import java.util.GregorianCalendar; import java.util.Scanner;public class Test08 {//这是一个main方法,是程序的入口public static void main(String[] args) {//录入日期的StringScanner sc new Scanner…...

35-40的技术人员为什么会被“不友好”,请你们自身反思-拒做职场的“嗯嗯”怪

35-40真的是IT人员的一道坎吗? IT技术做不到35-40,可是我身边有大量35-40事业发达、职业发展更好的朋友。同时,我身边也有大量35-40被“毕业”的人更多。 本人经过7年来先后带队过3个大型研发团队,最少的也有60-70号人。最多的达到…...

工地烟火AI监控识别分析系统 yolov7

工地烟火AI监控识别分析系统通过yolov7网络模型技术,工地烟火AI监控识别分析系统对工地或者厂区现场监控区域内的烟火进行实时分析报警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备…...

MATLAB算法实战应用案例精讲-【人工智能】对比学习(概念篇)(补充篇)

目录 前言 几个高频面试题目 基于对比学习(ContrastiveLearning)的文本表示模型【为什么】能学到文本【相似】度? 为什么对比学习能学到很好的语义相似度? 那么如何评价这个表示空间的质量呢? 知识储备 监督学习和非监督学习 算法原理…...

代码随想录算法训练营第三十一天 | 贪心1,想不到怎么找局部最优就做不出来

贪心算法理论基础 代码随想录 (programmercarl.com) 贪心算法理论基础!_哔哩哔哩_bilibili 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额&#xff…...

【SVN】版本控制管理的文件(夹)如何重命名

目录 一、前言二、操作步骤1. 使用SVN重命名(SVN rename)2. 输入新名称3. 确定重命名4. 立刻进行一次提交(commit)5. 补充 三、可能遇到的问题1. 情况一2. 情况二3. 情况三 一、前言 如果只是在本地的文件系统中修改SVN中的文件&a…...

必须包含数字,字母组合的密码正则表达式

输入要求:由数字和字母组成,并且要同时含有数字和字母,且长度要在2-64位之间。 ^(?![0-9]$)(?![a-zA-Z]$)[0-9A-Za-z]{2,64}$ 分开来注释一下: ^ 匹配一行的开头位置 (?![0-9]$) 预测该位置后面不全是数字 (?![a-zA-Z]$) 预…...

JavaScript:栈和对列

文章目录 栈和对列Js 有栈与队列吗20. 有效的括号 - 力扣(LeetCode)思路 1047. 删除字符串中的所有相邻重复项 - 力扣(LeetCode)思路代码分析array.join() 操作打印const s of str 操作遍历 150. 逆波兰表达式求值 - 力扣&#xf…...

[数据库系统] 一、创建表以及使用主键约束(educoder)

1.任务:在数据库中创建一个表。 2.需要掌握: 如何在指定数据库中创建表。 知识点:如何在指定数据库中创建表。 我们先来了解一下在数据库中创建表的规则: CREATE TABLE 表名(字段名,数据类型,字段名,数据类型,.....) 例如&…...

《走进对象村4》之面向对象的第一大特性——封装

文章目录 🚀文章导读1、封装的概念2、访问限定修饰符3、如何进行封装4、封装的优点: 🚀文章导读 在本篇文章中,将详细的对封装进行总结,文章仅仅是个人的一些理解,如果有错误的地方,还望指出看完…...

罗马数字转整数、整数转罗马数字----2023/5/4

罗马数字转整数----2023/5/4 1.罗马数字转整数 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符 数值 I 1 V 5 X 10 L 50 C 100 D …...

2023-05-04:用go语言重写ffmpeg的scaling_video.c示例,用于实现视频缩放(Scaling)功能。

2023-05-04:用go语言重写ffmpeg的scaling_video.c示例,用于实现视频缩放(Scaling)功能。 答案2023-05-04: 这段代码实现了使用 libswscale 库进行视频缩放的功能。下面是程序的主要流程: 1.获取命令行参…...

QT Android QTextEdit 复制粘贴文本后出现多余数据问题

目录 问题原因解决方法 问题 QT Android QTextEdit 长按选中文本后,点击复制,然后粘贴到手机便签或者QQ中,出现多余数据 例如,要复制的文本为 只因你太美 但实际在便签中粘贴后的文本为 只因你太美 p, li { white-space: pre-wra…...

知识变现海哥:你为什么努力却不富有,大概率是你不懂这个道理

要有价值观念,要有交换思维。商业的本质都是基于价值交换,你能为别人提供多少价值,你就能赚多少米,你帮助别人处理的问题越多你越有价值,你能成就多少人你就能被多少人成就。这是商业行为的底层逻辑。 你没赚到米 一是…...

【Mybatis】增删改查

1.添加相应的jar包 2.创建持久化类 在src目录下创建一个名为com.mybatis.po的包 创建持久化类MyUser,包含三个属性(uid,uname,usex) package com.mybatis.po; /***springtest数据库中user表的持久化类*/ public class MyUser {private Integer uid;//主键private…...

20230504----重返学习-vue2项目-跳转拦截-重定向并返回前一页-使用vuex调用接口-全选与全不选-总价计算

day-061-sixty-one-20230504-vue2项目-跳转拦截-重定向并返回前一页-使用vuex调用接口-全选与全不选-总价计算 vue2项目 跳转拦截 设置跳转拦截,比如在用户没token时,不能进入具体详情页,而是进入登录页进行登录。 跳转拦截具体思路 前端…...

(异或相消)猫猫数字异或和

E - Red Scarf (atcoder.jp) 刚入坑写的一道题被我拉出来对比分析了 我的思路: 垃圾运气选手凭借直觉乱搞猜出来的,没有思路。 题解思路: 由问题陈述中XOR的定义,我们可以看出计算3个或更多整数的XOR可以以任意顺序进行&#…...

树脂塞孔有哪些优缺点及应用?

树脂塞孔的概述 树脂塞孔就是利用导电或者非导电树脂,通过印刷,利用一切可能的方式,在机械通孔、机械盲埋孔等各种类型的孔内进行填充,实现塞孔的目的。 树脂塞孔的目的 1 树脂填充各种盲埋孔之后,利于层压的真空下…...

【Robot Framework】RF关键字大全

收录工作当中最常用的Robot Framework关键字 内容较多,可以CtrlF快速搜索自己想要的 1. RF循环使用(FOR循环) {list1} create list LOG TXT INI INF C CPP JAVA JS CSS LRC H ASM S ASP FOR ${file_type} IN {list1} log 构造请求参数 ${t…...

Xilinx Artix-7【XC7A35T-2CSG324I】【XC7A35T-1CSG324I】成本与收发器优化的FPGA器件

产品介绍: Xilinx Artix -7系列 FPGA 重新定义了成本敏感型解决方案,功耗比上一代产品降低了一半,同时为高带宽应用提供一流的收发器和信号处理能力。这些设备基于 28 纳米 HPL 工艺构建,提供一流的性能功耗比。与 MicroBlaze™ 软…...

K8S之自定义Controller

简介 在此之前我们先来了解下kubernetes的两个概念"声明式API"和"控制器模式"。"声明式API"核心原理就是当用户向kubernetes提交了一个API对象的描述后,Kubernetes会负责为你保证整个集群里各项资源的状态,都与你的API对象…...

无线电相关的SCI期刊有哪些? - 易智编译EaseEditing

以下是几个无线电相关的SCI期刊: IEEE Transactions on Wireless Communications: 这是一个IEEE无线通信协会的期刊,主要涵盖了无线通信领域的最新研究进展,包括无线网络,通信系统和信号处理等方面。 IEEE Transacti…...

Rust - 结构体基本使用

基础代码示例 为了理解何时需要使用结构体,官方文档给了一个案例,就是计算长方形的面积,这里我们会一步一步的重构代码直到使用结构体为止。 计算长方形的面积的具体逻辑就是获取长方形的宽度和高度,然后通过公式计算出长方形的…...

29. Kubernetes 核心组件讲解——Controller Manager

本章讲解知识点 Controller Manager 概述Replication ControllerNode ControllerResourceQuota ControllerNamespace ControllerService Controller 与 Endpoint Controller1. Controller Manager 概述 1.1 基本概念 一般来说,智能系统和自动系统通常会通过一个“操作系统”…...

BetaFlight统一硬件配置文件研读之feature命令

BetaFlight统一硬件配置文件研读之feature命令 1. 源由2. 代码分析3. 实例分析4. 配置情况4.1 feature4.2 feature list4.3 feature feature_name4.4 feature -feature_name 5. 参考资料 统一硬件配置文件的设计是一种非常好的设计模式,可以将硬件和软件的工作进行解…...

ChatGPT 不好用?那你看下这份 Prompt 工程指南

作为大型语言模型接口,ChatGPT 生成的响应令人刮目相看,然而,解锁其真正威力的关键还是在于提示工程。 在本文中,我们将揭示制作提示的专家级技巧,以生成更准确、更有意义的响应。无论你使用 ChatGPT 是为了服务客户、…...

免费设计房屋的网站/淘宝关键词top排行榜

(1) 十进制转换为二进制,分为整数部分和小数部分① 整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去&#xf…...

百度打击未备案网站/seo的外链平台有哪些

这是一篇有关莫比乌斯反演的总结 莫比乌斯反演是什么? 我也说不清 其实做完了这么多题后,我对莫反的理解就只是两个式子 然后在学莫反的过程中了解到了许许多多的套路,有用 最基础的,两个式子 我们假设有两个函数\(F(n)\)和\(f(n)…...

网站建设运营的成本/济南百度推广公司电话

如果想查找“_cs”结尾的的账户select * from [user] where loginname like %_cs是不行的,_ 被认为是任意的字符,所以需要转义字符,有两种写法:select * from [user] where loginname like %[_]csselect * from [user] where logi…...

网站seo收费/seo最新

原标题:Mac小知识--软件的三种安装/卸载方法,优缺点分析mac电脑怎么卸载软件?Mac系统如何卸载/删除软件?对于mac系统操作还不了解的用户不要着急,小编为大家带来Mac实用技巧之:三种安装/卸载软件的方法及其优缺点&…...

官方网站建设成果/互动营销的案例有哪些

介绍一款Windows下的神奇 —— everything,软件很小巧,但是搜索速度非常快,比Windows自带的搜索功能更强大、更快。掌握它的基本用法,在查找文件时能提升很高的效率 1、下载 2、基本设置(搜索历史) a) 如何…...

个人网站怎么做有创意/北京seo相关

前言(1)不记快捷键,不要说自己会PS;(2)背下本文中所列一半以上的快捷键,就可以玩转PS了;(3)本文也并没列出Photoshop中所有的快捷键。本文所列快捷键有很多也…...