【MySql】数据库 select 进阶
数据库
- 数据库表的设计
- ER 关系图
- 三大范式
- 聚合函数与分组查询
- 聚合函数 (count、sum、avg、max、min)
- 分组查询 group by fields....having....(条件)
- 多表联查
- 内连接
- 外连接(左连接,右连接)
- 自连接
- 子查询
- 合并查询 UNION
数据库表的设计
ER 关系图
ER 图:以图形的方式描述表与表之间的关系
矩形:实体
圆形:实体属性
菱形:实体间关系
例如:
给定学生信息表的个字段信息,画出其 ER 图
学生信息表(学号,姓名,性别,年龄,出生日期,所属班级)

班级表(班级号,班级描述)

其次,表与表之间存在一对一、一对多、多对一 的对应关系
上述 ER 图,一个学生只能属于一个班级,而一个班级里边可以有多个学生,因此学生信息表与班级表之间是属于多对一的关系

一般在多对多关系中,需要创建一个第三方表来找到两个独立实体之间的关系建立起联系
三大范式
第一范式 1NF:表中每个字段都应该具备原子性(即不可再分割特性)
特性:属性不可分割,即每个属性都是不可分割的原子项。(实体的属性即表中的列)
第二范式 2NF:主要针对组合主键的表
表中的每个字段都应该与主键完全关联
特性:在1NF的基础上,非码属性必须完全依赖于候选码(在1NF基础上消除非主属性对主码的部分函数依赖)
例如,在学生信息表中,给定一个主键信息–学生学号 sn,则可以确定唯一的学生信息(学生姓名,学生性别,学生年龄,出生日期…),也就是除学号 sn 以外的其他属性都完全依赖于学生学号 sn
第三范式 3NF:表中每个字段,都应该与主键直接关联而不应该简介关联
特性:在2NF基础上,任何非主属性不依赖于其它非主属性(在2NF基础上消除传递依赖)

聚合函数与分组查询
聚合函数 (count、sum、avg、max、min)
聚合函数:数据库提供给用户的用于进行数据统计的函数
实例中使用的表结构信息:

1、count 统计个数
count(*):统计查询的结果个数
count(列名):会忽略空值

当要查找的列中含有空值时:

2、sum 统计总和
sum(列名):对某属性值进行求和

3、avg 求平均值
avg(列名):对某属性值进行求平均

4、max 对指定字段求最大值
5、min 对指定字段求最小值

分组查询 group by fields…having…(条件)
分组查询本质上是为了进行数据统计
以表中指定字段对数据库表中数据进行分组,然后进行数据统计
例如在学生表中求男女生的平均成绩:

注意:分组查询中需要进行条件过滤时,不能使用 where,而要使用 having
例如在学生信息表中筛选出平均成绩大于80的性别信息:

多表联查
将多张表中的数据进行合并查询---------> 笛卡尔积
给定两张表结果:

内连接
在两张表中数据进行连接时候,找到了符合连接条件的数据则进行连接,找不到符合连接条件的数据则丢弃

内连接:
select* from table1 inner join table2 on condition
内连接结果:

外连接(左连接,右连接)
(1)左连接
左连接:以左表作为基表,在右表中查找符合连接条件的数据,找到了则连接,找不到连接 NULL
左连接:
select* from table1 left join table2 on condition
左连接结果:

(2)右连接
以右表为基表,在左表中查找符合连接条件的数据,找到了则连接,找不到连接 NULL
右连接:
select* from table1 right join table2 on condition
右连接结果:

自连接
一张表自己连接自己进行查找
在前边查找中,我们都是对于同一条记录中的两个不同字段进行比较查找,但是当我们需要对同一条记录中同一个字段中的信息进行比较----------> 需要将这个字段的两个值并列(连接)起来进行比较,这就需要进行自连接
as :取别名
子查询
一个 sql 语句的查询过滤条件是基于另一条查询语句的结果进行的
//示例:
select * from 表名
where 条件 = (
//当子查询结果只有一条结果时候使用 = ,若存在多条结果则使用 INselect* from 表名where 条件 )
IN 与 EXISTS:

合并查询 UNION
将两条语句的查询结果合并起来进行返回,只有当两条语句的查询结果字段保持一致才能进行合并,UNION会自动去重 (UNION ALL 显示所有合并的结果)
相关文章:
【MySql】数据库 select 进阶
数据库 数据库表的设计ER 关系图三大范式 聚合函数与分组查询聚合函数 (count、sum、avg、max、min)分组查询 group by fields....having....(条件) 多表联查内连接外连接(左连接,右连接)自连接子查询合并查询 UNION 数据库表的设计 ER 关系…...
CVPR 2023 | VoxelNeXt实现全稀疏3D检测跟踪,还能结合Seg Anything
在本文中,研究者提出了一个完全稀疏且以体素为基础的3D物体检测和跟踪框架VoxelNeXt。它采用简单的技术,运行快速,没有太多额外的成本,并且可以在没有NMS后处理的情况下以优雅的方式工作。VoxelNeXt在大规模数据集nuScenes、Waymo…...
本地使用3台centos7虚拟机搭建K8S集群教程
第一步 准备3台centos7虚拟机 3台虚拟机与主机的网络模式都是桥接的模式,也就是他们都是一台独立的“主机” (1)kebe-master的配置 虚拟机配置: 网络配置: (2)kebe-node1的配置 虚拟机配…...
NVIDIA CUDA驱动安装
1 引言 因为笔记本电脑上运行Milvus图像检索代码,需要安装CUDA驱动。电脑显卡型号是NVIDIA GeForce GTX 1050 Ti Mobile, 操作系统是Ubuntu 20.04,内核版本为Linux 5.15.0-72-generic。 2 CUDA驱动测试 参考网上的资料:https://blog.csdn.…...
python 从excel中获取需要执行的用例
classmethod def get_excel_data(cls, excel_name, sheet_name, case_numNone):"""读取excel文件的方法:param excel_name: 文件名称:param sheet_name: sheet页的名称:param case_name: 执行的case名称:return:"""def get_row_data(table, row)…...
Web3中文|乱花渐欲meme人眼,BRC-20总市值逼近10亿美元
现在的Web3加密市场,用“乱花渐欲meme人眼”来形容再合适不过了。 何为meme? “meme”这个词大概很多人都不知道如何正确发音,并且一看到它就会和狗狗币Dogecoin等联系在一起。那它究竟从何而来呢? Meme:[mi:m]&#x…...
盖雅案例入选「首届人力资源服务国际贸易交流合作大会20项创新经验」
近日,首届人力资源服务国际贸易交流合作大会顺利召开。为激励企业在人力资源服务贸易领域不断创新,加快培育对外贸易新业态、新模式,形成人力资源服务领域国际竞争新优势,大会评选出了「首届人力资源服务国际贸易交流合作大会20项…...
[论文笔记]SimMIM:a Simple Framework for Masked Image Modeling
文章地址:https://arxiv.org/abs/2111.09886 代码地址:https://github.com/microsoft/SimMIM 文章目录 摘要文章思路创新点文章框架Masking strategyPrediction headPrediction targetEvaluation protocols 性能实验实验设置Mask 策略预测头目标分辨率预…...
mysql从零开始(4)----索引/视图/范式
接上文 mysql从零开始(3) 索引 索引是在数据库表的字段上添加的,是为了提高查询效率存在的一种机制。一张表的一个字段可以添加一个索引,也可以多个字段联合起来添加索引。索引相当于一本书的目录,是为了缩小扫描范围…...
Flutter框架:从入门到实战,构建跨平台移动应用的全流程解析
第一章:Flutter框架介绍 Flutter框架是由Google推出的一款跨平台移动应用开发框架。相比其他跨平台框架,Flutter具有更高的性能和更好的用户体验。本章将介绍Flutter框架的概念、特点以及与其他跨平台框架的比较,以及Flutter开发环境的搭建和…...
Spring AOP+注解方式实现系统日志记录
一、前言 在上篇文章中,我们使用了AOP思想实现日志记录的功能,代码中采用了指定连接点方式(Pointcut(“execution(* com.nowcoder.community.controller..(…))”)),指定后不需要在进行任何操作就可以记录日志了&…...
OpenGL 4.0的Tessellation Shader(细分曲面着色器)
细分曲面着色器(Tessellation Shader)处于顶点着色器阶段的下一个阶段,我们可以看以下链接的OpenGL渲染流水线的图:Rendering Pipeline Overview。它是由ATI在2001年率先设计出来的。 目录 细分曲面着色器细分曲面Patch细分曲面控…...
项目经理如何及时掌控项目进度?
延迟是指超出计划的时间,而无法掌控则意味着管理者对实际情况一无所知。 为了解决这些问题,我们需要建立好的制度和沟通机制。例如使用项目管理软件来跟踪进度、定期开会并避免沟通障碍等。 管理者可以建立相关制度: 1、建立进度记录制度。…...
HTML <applet> 标签
HTML5 中不支持 <applet> 标签在 HTML 4 中用于定义嵌入式小程序(插件)。 实例 一个嵌入的 Java applet: <applet code="Bubbles.class" width="350" height="350"> Java applet that draws animated bubbles. </applet&g…...
加密与解密
加密与解密 加密方式分类 加密方式主要分为两种 一种是对称加密一种是非对称加密 对称加密 对称和非对称两种方式主要说的是加密和解密两个过程。 如果对数据用一个钥匙进行了加密,那么, 你想成功读取到这个加密了的数据的话,就必须对这…...
京东金融Android瘦身探索与实践
作者:京东科技 冯建华 一、背景 随着业务不断迭代更新,App的大小也在快速增加,2019年~2022年期间一度超过了117M,期间我们也做了部分优化如图1红色部分所示,但在做优化的同时面临着新的增量代码,包体积一直…...
open3d-ml 读取SemanticKITTI Dataset
目录 1. 下载dataset 2. 读取并做可视化 3. 源码阅读 3.1 读取点云数据-bin格式 3.2 读取标注数据-.label文件 3.3 读取配置 3.4 test 3.5 train 1. 下载dataset 以SemanticKITTI为例。下载链接:http://semantic-kitti.org/dataset.html#download 把上面三…...
6.其他函数
1.时间日期类 -- current_date() 返回当前日期 -- date_add(date, n) 返回从date开始n天之后的日期 -- date_sub(date, n) 返回从date开始n天之前的日期 -- datediff(date1, date2) 返回date1-date2的日期差 -- year(date) 返回…...
2023年宜昌市中等职业学校技能大赛 “网络搭建与应用”竞赛题-1
2023年宜昌市中等职业学校技能大赛 “网络搭建与应用”竞赛题 一、竞赛内容分布 “网络搭建及应用”竞赛共分二个部分,其中: 第一部分:企业网络搭建部署项目,占总分的比例为50%; 第二部分:企业网络服…...
Linux权限划分的原则
考察的不仅是一个具体的指令,还考察对技术层面的认知。 如果对 Linux 权限有较深的认知和理解,那么完全可以通过查资料去完成具体指令的执行。更重要的是,认知清晰的程序员可以把 Linux 权限管理的知识迁移到其他的系统设计中。 权限抽象 一…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
