当前位置: 首页 > news >正文

【论文阅读】Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning

论文下载
GitHub
bib:

@INPROCEEDINGS{,title		= {Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning},author	= {Eric Arazo and Diego Ortego and Paul Albert and Noel E O'Connor and Kevin McGuinness},booktitle	= {IJCNN},year		= {2020},pages     = {1--8}
}

1. 摘要

Semi-supervised learning, i.e. jointly learning from labeled and unlabeled samples, is an active research topic due to its key role on relaxing human supervision.

总览半监督学习。

In the context of image classification, recent advances to learn from unlabeled samples are mainly focused on consistency regularization methods that encourage invariant predictions for different perturbations of unlabeled samples.

提到半监督分类中的一致性正则。

We, conversely, propose to learn from unlabeled data by generating soft pseudo-labels using the network predictions.

提到本文中适用了伪标签技术(soft pseudo-labels)。

We show that a naive pseudo-labeling overfits to incorrect pseudo-labels due to the so-called confirmation bias and demonstrate that mixup augmentation and setting a minimum number of labeled samples per mini-batch are effective regularization techniques for reducing it.

核心的贡献。提出了确认偏差(confirmation bias),本文贡献是证明了mixup augmentationsetting a minimum number of labeled samples per mini-batch是有效减少确认偏差的正则技术。

The proposed approach achieves state-of-the-art results in CIFAR-10/100, SVHN, and Mini-ImageNet despite being much simpler than other methods.

These results demonstrate that pseudo-labeling alone can outperform consistency regularization methods, while the opposite was supposed in previous work.

这一点就很令人惊讶了,伪标签技术的方法超过了一致性正则的方法。还没看原文,应该是还没有出现FixMatchFlexMatch方法。

2. 算法描述

符号意义
D l = { ( x i , y i ) } i = 1 N l D_l = \{(x_i, y_i)\}^{N_l}_{i=1} Dl={(xi,yi)}i=1Nl有标记数据
D u = { x i } i = 1 N u D_u = \{x_i\}^{N_u}_{i=1} Du={xi}i=1Nu无标记数据
D ~ u = { ( x i , y ~ i } i = 1 N \widetilde{D}_u = \{(x_i, \widetilde{y}_i\}^{N}_{i=1} D u={(xi,y i}i=1N训练数据,其中对于有标记数据 y ~ i \widetilde{y}_i y i表示真实标签,对于无标记数据 y ~ i \widetilde{y}_i y i表示对应伪标签。
h θ h_{\theta} hθ模型及对应的参数 θ \theta θ

经典的交叉熵损失函数:
ℓ ∗ ( θ ) = − ∑ i = 1 N y ~ i T log ⁡ ( h θ ( x i ) ) (1) \ell^*(\theta) = -\sum_{i=1}^{N}\widetilde{y}_i^{\mathsf{T}}\log(h_{\theta}(x_i)) \tag{1} (θ)=i=1Ny iTlog(hθ(xi))(1)
Note:

In particular, we store the softmax predictions h θ ( x i ) h_{\theta}(x_i) hθ(xi) of the network in every mini-batch of an epoch and use them to modify the soft pseudo-label y ~ \widetilde{y} y for the N u N_u Nu unlabeled samples at the end of every epoch.

We proceed as described from the second to the last training epoch, while in the first epoch we use the softmax predictions for the unlabeled samples from a model trained in a 10 epochs warm-up phase using the labeled data subset D u D_u Du.

Soft pseudo-labels在本文中表示上一个阶段网络对于无标记样本的预测。注意区别于Hard pseudo-labelsSoft pseudo-labels不是one-hot向量,而是对于样本预测的概率向量(softmax)。

Two Regularizations:
ℓ = ℓ ∗ + λ A R A + λ H R H (2) \ell = \ell^*+\lambda_A R_A + \lambda_H R_H \tag{2} =+λARA+λHRH(2)
where

  • R A = ∑ c = 1 C p c log ⁡ ( p c h ‾ c ) R_A = \sum_{c=1}^{C}p_c\log(\frac{p_c}{\overline{h}_c}) RA=c=1Cpclog(hcpc);
  • R H = − 1 N ∑ i = 1 N ∑ c = 1 C h θ c ( x i ) log ⁡ ( h θ c ( x i ) ) R_H = -\frac{1}{N}\sum_{i=1}^{N}\sum_{c=1}^{C}h_{\theta}^c(x_i) \log(h_{\theta}^c(x_i)) RH=N1i=1Nc=1Chθc(xi)log(hθc(xi)).

R A R_A RA不鼓励将所有样本分配到单个类。其中 p c p_c pc表示类别 c c c的先验概率分布, h ‾ c \overline{h}_c hc表示模型在数据集中所有 c c c类别样本中的平均概率(softmax)。意思是本来有猫有狗的类别,网络为了省事,直接不管三七二十一,直接预测一个猫,这个现象在不平衡数据集上很容易出现。

R H R_H RHentropy regularization)鼓励每个软伪标记的概率分布集中在单个类上,避免了网络可能因弱引导而陷入的局部最优。这一点容易理解,就是对于一个样本,鼓励预测的类的概率远远大于其他类别。

Confirmation bias:

Overfitting to incorrect pseudo-labels predicted by the network is known as confirmation bias.
It is natural to think that reducing the confidence of the network on its predictions might alleviate this problem and improve generalization.

Note: 这里将确认偏差(confirmation bias)定义为网络对于不正确伪标签的过拟合。降低对于不正确标签的权重可以缓解这一现象。

mixup regularization:

Recently, mixup data augmentation introduced a strong regularization technique that combines data augmentation with label smoothing, which makes it potentially useful to deal with this bias.

Question:

  • mixup的细节,在单个批次中,怎么mixup?
  • mixup样本的标签如何确定?

setting a minimum number of labeled samples per mini-batch:

Oversampling the labelled examples by setting a minimum number of labeled samples per mini-batch k (as done in other works provides a constant reinforcement with correct labels during training, reducing confirmation bias and helping to produce better pseudo-labels.

Question:

  • 单个批次样本如何配置,多少个有标记数据,多少个无标记数据?

相关文章:

【论文阅读】Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning

论文下载 GitHub bib: INPROCEEDINGS{,title {Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning},author {Eric Arazo and Diego Ortego and Paul Albert and Noel E OConnor and Kevin McGuinness},booktitle {IJCNN},year {2020},pages …...

三次输错密码后,系统是怎么做到不让我继续尝试的?

故事背景 忘记密码这件事,相信绝大多数人都遇到过,输一次错一次,错到几次以上,就不允许你继续尝试了。 但当你尝试重置密码,又发现新密码不能和原密码重复: 相信此刻心情只能用一张图形容: 虽…...

医学影像系统源码,三维后处理和重建 PACS源码

医学影像系统源码,三维后处理和重建 PACS源码 医学影像系统由PACS系统、RIS系统组成,提供与HIS的接口(HL7或其他类型)。 主要功能介绍 信息预约登记 支持对患者、检查项目、申请医生、申请单据、设备等信息进行管理。且支持检查…...

golang汇编之函数(四)

基本语法 函数标识符通过TEXT汇编指令定义,表示该行开始的指令定义在TEXT内存段。TEXT语句后的指令一般对应函数的实现,但是对于TEXT指令本身来说并不关心后面是否有指令。我个人觉得TEXT和LABEL定义的符号是类似的,区别只是LABEL是用于跳转…...

成都爱尔李晓峰主任:眼睛干到发出求救信号,快注意!

眼睛总感觉痒痒的,时不时干涩、酸胀、畏光? 它在提醒你,它太干了救救它! 干眼如何判断? 干眼症是由于泪液的质和量异常或者泪液的流体动力学障碍而导致眼表无法保持湿润的一种眼病。会发生眼睛干涩、酸胀、畏光、灼热感、异物感、看东西容易…...

HiEV独家 | 比亚迪高阶智驾终于来了 ,新款汉首发,多车型将搭载

作者 | 德新 编辑 | 马波 比亚迪上马高阶辅助驾驶,首先从高速NOA开始。 HiEV获悉,今年第三季度,比亚迪将在新的 汉车型 上,搭载高速领航辅助驾驶功能(俗称高速NOA)。继汉之后,王朝系列唐…...

全面解析Linux指令和权限管理

目录 一.指令再讲解1.时间相关的指令2.find等搜索指令与grep指令3.打包和压缩相关的指令4.一些其他指令与热键二.Linux权限1.Linux的权限管理2.文件类型与权限设置3.目录的权限与粘滞位 一.指令再讲解 1.时间相关的指令 date指令: date 用法:date [OPTION]… [FOR…...

C++ enum 和enum class

文章目录 C enum 和 enum class共同点区别 C enum 和 enum class 在C中, enum 是一种定义枚举类型的方法。 一个枚举是一个整数值的命名集合。 可以通过以下方式创建一个枚举类型: enum Color {RED,GREEN,BLUE };这里我们定义了一个名为 Color 的枚举类…...

设计模式之中介者模式

参考资料 曾探《JavaScript设计模式与开发实践》;「设计模式 JavaScript 描述」中介者模式JavaScript 设计模式之中介者模式 定义 在我们生活的世界中,每个人每个物体之间都会产生一些错综复杂的联系。在应用程序里也是一样,程序由大大小小…...

DJ5-8 磁盘存储器的性能和调度

目录 5.8.1 磁盘性能简述 1、磁盘的结构和布局 2、磁盘的类型 3、磁盘数据的组织和格式 4、磁盘的访问过程 5、磁盘访问时间 5.8.2 磁盘调度算法 1、先来先服务 FCFS 2、最短寻道时间优先 SSTF 3、扫描算法(电梯算法)SCAN 4、循环扫描算法 …...

springboot+vue留守儿童爱心网站(源码+文档)

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于springboot的留守儿童爱心网站。项目源码以及部署相关请联系风歌,文末附上联系信息 。 💕💕作者:风…...

数字设计小思 - 谈谈非理想时钟的时钟偏差

写在前面 本系列整理数字系统设计的相关知识体系架构,为了方便后续自己查阅与求职准备。在FPGA和ASIC设计中,时钟信号的好坏很大程度上影响了整个系统的稳定性,本文主要介绍了数字设计中的非理想时钟的偏差来源与影响。 (本文长…...

智慧厕所引导系统的应用

智慧公厕引导系统是一种基于智能化技术的公厕管理系统,可以为如厕者提供更加便捷、舒适、安全的如厕环境和服务,同时也可以引导如厕者文明如厕,营造文明公厕的氛围。智慧公厕引导系统可以通过智能引导屏、手机小程序等方式,为如厕…...

眼球追踪、HDR、VST,从代码挖掘Valve下一代VR头显

擅长爆料、挖掘线索的Brad Lynch,此前发布了Quest Pro等设备的线索文章引发关注。​近期,又公布一系列与“Valve Deckard”VR头显相关消息,比如支持眼球追踪、HDR、VST透视、Wi-Fi网络等等。在SteamVR 1.26.1测试版更新、Steam用户端、Gamesc…...

【MYSQL】聚合函数和单表/多表查询练习、子查询、内外连接

目录 1.聚合函数 1.1.group by子句 1.2.having语句 2.单表查询 2.2单表查询 3.多表查询 3.2.子查询 5.内链接 6.外连接 1.聚合函数 函数说明count返回查询到的数据的数量sum返回查询到的数据的总和avg返回查询到的数据的平均值max返回查询到的数据的最大值min返回查询…...

分布式数据库集成解决方案

分布式数据库集成解决方案 分析访问部署扩展.1 以界面方式创建数据库(采用DBCA) # 背景 由于公司业务的发展,要求在其它三个城市设立货仓,处理发货业务。公司本部运行着一套用Sybase数据库的MIS系统可以实现发货,该系统…...

如何配置静态路由?这个实例详解交换机的静态路由配置

一、什么是静态路由 静态路由是一种路由的方式,它需要通过手动配置。静态路由与动态路由不同,静态路由是固定的,不会改变。一般来说,静态路由是由网络管理员逐项加入路由表,简单来说,就是需要手动添加的。…...

OpenCV教程——图像操作。读写像素值,与/或/非/异或操作,ROI

1.读取像素值 我们可以通过mat.ptr<uchar>()获取图像某一行像素数组的指针。因此如果想要读取点(x50&#xff0c;y0)&#xff08;⚠️即(row0,col50)&#xff09;的像素值&#xff0c;可以这样做&#xff1a;mat.ptr<uchar>(0)[50]。 在本节将介绍另外几种直接读…...

Winforms不可见组件开发

Winforms不可见组件开发 首先介绍基本知识,有很多的朋友搞不清楚Component与Control之间的区别,比较简单形象的区别有下面两点: 1、Component在运行时不能呈现UI,而Control可以在运行时呈现UI。 2、Component是贴在容器Container上的,而Control则是贴…...

静态链接库与动态链接库

静态链接库与动态链接库 一、从源程序到可执行文件二、编译、链接和装入三、静态链接库与动态链接库四、静态链接库与动态链接库的制作与使用1.静态库的制作及使用2.动态库的制作及使用 一、从源程序到可执行文件 由于计算机无法直接理解和执行高级语言&#xff08;C、C、Java…...

ffmpeg 抓取一帧数据

FFmpeg功能比较强大&#xff0c;这里记录一条从摄像机抓拍的一条命令&#xff1a; ffmpeg.exe -i rtsp://admin:hisense2021192.168.1.64:554/live0.264 -r 1 -ss 00:00:00 -t 00:00:01 -f image2 image.jpg ; ---执行成功。 这是一条网络摄像机的抓图命令&#xff0c;其实就…...

学好数据结构的秘诀

学好数据结构的秘诀 作为计算机专业的一名“老兵”&#xff0c;笔者从事数据结构和算法的研究已经近20余年了&#xff0c;在学习的过程中&#xff0c;也会遇到一些问题&#xff0c;但在解决问题时&#xff0c;积累了一些经验&#xff0c;为了让读者在学习数据结构的过程中少走…...

IT知识百科:什么是下一代防火墙和IPS?

引言 随着网络攻击的日益增多&#xff0c;防火墙和入侵防御系统&#xff08;Intrusion Prevention System, IPS&#xff09;已成为企业网络安全的必备设备。然而&#xff0c;传统的防火墙和IPS已经无法满足复杂多变的网络安全威胁&#xff0c;因此&#xff0c;下一代防火墙和I…...

常量指针和指针常量, top-level const和low-level const

区分常量指针和指针常量&#xff0c;并且认识什么是top-level const和low-level const。 1.判别&#xff1a; 拿到一个指针&#xff08;例如const int* a),就从左往右读&#xff0c;只看const和*。const读作常量&#xff0c;*读作指针,int类型这些不用管。 2.指针常量 int a…...

【iOS】-- GET和POST(NSURLSession)

文章目录 NSURLSessionGET和POST区别 GET方法GET请求步骤 POSTPOST请求步骤 NSURLSessionDataDelegate代理方法AFNetWorking添加头文件GETPOST第一种第二种 NSURLSession 使用NSURLSession&#xff0c;一般有两步操作&#xff1a;通过NSURLSession的实例创建task&#xff1b;执…...

@RequestBody,@RequestParam,@RequestPart应用场景和区别

ReqeustBody 使用此注解接收参数时&#xff0c;适用于请求体格式为 application/json&#xff0c;只能用对象接收 RequestParam 支持application/json&#xff0c;也同样支持multipart/form-data请求 RequestPart RequestPart这个注解用在multipart/form-data表单提交请求的方法…...

libevent高并发网络编程 - 02_libevent缓冲IO之bufferevent

文章目录 1. 为什么需要缓冲区&#xff1f;2. 水位3. bufferevent常用API3.1 evconnlistener_new_bind()3.2 evconnlistener_free()3.3 bufferevent_socket_new()3.4 bufferevent_enable()3.5 bufferevent_set_timeouts()3.6 bufferevent_setcb()3.7 bufferevent_setwatermark(…...

院内导航移动导诊服务体系,院内导航怎么实现?

院内导航怎么实现&#xff1f;经过多年发展&#xff0c;医院规模愈加庞大&#xff0c;尤其是综合性医院&#xff0c;院区面积较大&#xff0c;门诊、医技、住院等大楼及楼区内部设计复杂&#xff0c;科室、诊室数量众多&#xff0c;对于新患者犹如进入了迷宫&#xff0c;客观环…...

MCTP协议和NCSI

MCTP&#xff08;Management Component Transport Protocol&#xff09;是一种管理组件传输协议&#xff0c;用于在计算机系统中管理各种组件&#xff0c;例如固件、BIOS、操作系统等。MCTP 协议定义了一种传输格式&#xff0c;以便在各种总线上进行通信&#xff0c;例如 PCIe、…...

Jmeter接口测试流程详解

1、jmeter简介 Jmeter是由Apache公司开发的java开源项目&#xff0c;所以想要使用它必须基于java环境才可以&#xff1b; Jmeter采用多线程&#xff0c;允许通过多个线程并发取样或通过独立的线程对不同的功能同时取样。 2、jmeter安装 首先需要安装jdk&#xff08;最好是最…...