当前位置: 首页 > news >正文

matlab进行双目标定获取双目参数并打印教程

文章目录

  • 前言
    • 1.打开matlab进行双目标定
    • 2.获取想要的参数


前言

  在相同的标定算法和标定参数下,Python和Matlab的标定精度是相同的。因为标定精度主要取决于标定算法和标定参数的质量,而不是编程语言的选择。

  不同的编程语言可能使用不同的库或实现细节,可能会导致一些差异,但这种差异通常很小。因此,应该选择更熟悉的编程语言来进行标定,同时注意使用正确的算法和参数,确保标定的精度达到预期。
  我一般就是两个都用一次,看哪个精度高一点。

1.打开matlab进行双目标定

  输入下面代码,启动双目标定工具箱

stereoCameraCalibrator

  选择add images,添加左右图像和标定板尺寸
在这里插入图片描述
  详细步骤可以参考我的另一篇文章:matlab单双目标定提取相机标定中各张标定图片的重投影误差数据

2.获取想要的参数

  这里畸变系数我是按左右相机畸变系数:[k1, k2, p1, p2, k3]保存的,大家不需要的话,可以修改一下。
  

 % 内参参数
intrinsics1 = stereoParams.CameraParameters1.IntrinsicMatrix;
intrinsics2 = stereoParams.CameraParameters2.IntrinsicMatrix;% 外参参数
rotation = stereoParams.RotationOfCamera2;
translation = stereoParams.TranslationOfCamera2;
[R, t] = cameraPoseToExtrinsics(rotation, translation);% 焦距
focalLength1 = intrinsics1(1,1);
focalLength2 = intrinsics2(1,1);
f = (focalLength1+focalLength2)/2% 基线
baseline = norm(t);% 左相机畸变系数
distCoeffs1 = stereoParams.CameraParameters1.RadialDistortion;
tangCoeffs1 = stereoParams.CameraParameters1.TangentialDistortion;
leftDistCoeffs = [distCoeffs1(1:2) tangCoeffs1 distCoeffs1(3)];% 右相机畸变系数
distCoeffs2 = stereoParams.CameraParameters2.RadialDistortion;
tangCoeffs2 = stereoParams.CameraParameters2.TangentialDistortion;
rightDistCoeffs = [distCoeffs2(1:2) tangCoeffs2 distCoeffs2(3)];% 打印参数
fprintf('左相机内参: \n');
disp(intrinsics1);
fprintf('右相机内参: \n');
disp(intrinsics2);fprintf('旋转矩阵: \n');
disp(R);
fprintf('平移矩阵: \n');
disp(t);fprintf('左相机焦距: %f\n', focalLength1);
fprintf('右相机焦距: %f\n', focalLength2);
fprintf('焦距: %f\n', f);% 打印参数[k1, k2, p1, p2, k3]
fprintf(' 左相机畸变系数: [%f, %f, %f, %f, %f]\n', leftDistCoeffs);
fprintf(' 右相机畸变系数: [%f, %f, %f, %f, %f]\n', rightDistCoeffs);fprintf('基线: %f\n', baseline);

在这里插入图片描述
  我们在使用python过程中,常常需要转换一下内参外参。
  由于Matlab和Python的内参矩阵定义方式略有不同,Matlab中的内参矩阵需要进行转置后才能用于Python的cv2.stereoRectify。因此,在将Matlab的内参矩阵用于Python的cv2.stereoRectify时,需要进行转置操作。

 % 内参参数
intrinsics1 = stereoParams.CameraParameters1.IntrinsicMatrix;
intrinsics2 = stereoParams.CameraParameters2.IntrinsicMatrix;% 对内参矩阵进行转置
intrinsics1_transpose = intrinsics1';
intrinsics2_transpose = intrinsics2';% 输出转置后的内参矩阵
fprintf('左相机内参(转置): \n');
disp(intrinsics1_transpose);
fprintf('右相机内参(转置): \n');
disp(intrinsics2_transpose);

在这里插入图片描述

  此外,如果想临时关闭科学计数法,可以输入,永久关闭请百度:

format long g

在这里插入图片描述


相关文章:

matlab进行双目标定获取双目参数并打印教程

文章目录前言1.打开matlab进行双目标定2.获取想要的参数前言 在相同的标定算法和标定参数下,Python和Matlab的标定精度是相同的。因为标定精度主要取决于标定算法和标定参数的质量,而不是编程语言的选择。 不同的编程语言可能使用不同的库或实现细节&…...

JVM类加载机制

回到2018年的抖音哈哈. 回顾下: java开发环境: java编译运行过程: 1) 编译期:.java源文件,经过编译,生成.class字节码文件 2) 运行期:JVM加载.class并运行.class(0和1) 特点: 跨平台、一次编程,处处报错 名词解释: 1…...

8.1 优化概述

数据库性能取决于数据库级别的几个因素,例如表、查询和配置设置。这些软件结构导致了硬件级别的 CPU 和 I/O 操作,您必须将其最小化并尽可能提高效率。在研究数据库性能时,首先要学习软件端的高级规则和准则,然后使用墙上的时钟时…...

从0到1一步一步玩转openEuler--14 openEuler DNF(YUM)配置管理

文章目录14.1 DNF配置文件14.1.1 配置main部分14.1.2 配置repository部分14.1.3 显示当前配置14.2 创建本地软件源仓库14.3 添加、启用和禁用软件源14.3.1 添加软件源14.3.2 禁用软件源14.3.3 启用软件源DNF是一款Linux软件包管理工具,用于管理RPM软件包。DNF可以查…...

leetcode707 设计链表 带有输入和输出的

题目: 设计链表的实现。您可以选择使用单链表或双链表。单链表中的节点应该具有两个属性:val 和 next。val 是当前节点的值,next 是指向下一个节点的指针/引用。如果要使用双向链表,则还需要一个属性 prev 以指示链表中的上一个节…...

100种思维模型之非sr思维模型-012

什么是sr? sr是stimulus-response的缩写,意思是刺激反应。 那么非sr思维模型就是非刺激反应思维模型的意思。 今天我们来聊聊非sr思维模型——一个提醒我们思考,提醒我们任何时刻都有选择权的思维模型。 本文依然从三个方面进行介绍,何谓…...

绿竹生物再冲刺港交所上市:暂未商业化,孔健夫妇为实控人

近日,北京绿竹生物技术股份有限公司(下称“绿竹生物”)在港交所递交招股书,准备在港交所主板上市,中金公司为其独家保荐人。据贝多财经了解,绿竹生物曾于2022年6月28日在港交所递表。 相较于此前招股书&am…...

加拿大MSB金融牌照申请方案

什么是加拿大MSB金融牌照? 根据犯罪所得(洗钱)和恐怖主义融资法案,您的企业必须在加拿大金融交易和报告分析中心 (FINTRAC) 注册成为货币服务企业。自 2020 年 6 月 1 日起,外国货币服务企业也必须在 FINTRAC 注册&…...

javaEE 初阶 — 滑动窗口

文章目录滑动窗口1 滑动窗口下如何处理丢包TCP 工作机制:确认应答机制 超时重传机制 连接管理机制 滑动窗口 确认应答机制、超时重传机制、连接管理机制 都是给 TCP 的可靠性提供支持的。 虽然事变的比较可靠了,但是是有牺牲的,那就是传输…...

大咖说·图书分享|狼书(卷3):Node.js高级技术

Node.js都有哪些需要掌握的高级技术?前端为什么同样需要学习? Node.js未来的发展趋势究竟如何?本期大咖说,Node布道师桑世龙携新作《狼书(卷3):Node.js高级技术》展开分享。 ● 嘉宾介绍 桑世龙:Node布道…...

1.5配置NBMA和P2MP网络类型

1.3.3实验5:配置NBMA和P2MP网络类型 1. 实验需求 控制OSPF DR的选举修改OSPF的网络类型2. 实验拓扑 配置NBMA和P2MP网络类型实验拓扑如图1-13所示。 图1-13 配置NBMA和P2MP网络类型 3. 实验步骤 帧中继的配置如图1-14和图1-15所示...

Java面试题

三次握手,四次挥手中,为什么要挥手四次 第一次握手,客户端发送同步报文到服务端,客户端知道自己有发送数据能力,不知道服务端是否有发送、接受数据能力。 第二次握手,服务端收到同步报文,并回复…...

opencv锁定鼠标定位

大家好,我是csdn的博主:lqj_本人 这是我的个人博客主页: lqj_本人的博客_CSDN博客-微信小程序,前端,python领域博主lqj_本人擅长微信小程序,前端,python,等方面的知识https://blog.csdn.net/lbcyllqj?spm1011.2415.3001.5343哔哩哔哩欢迎关注…...

机器连接和边缘计算

以一种高效、可扩展的方式进行连接和边缘计算的结合,解决了在工业物联网应用中的机器数据集成问题。 一 边缘计算 边缘计算描述了由中央平台管理的数据分散式处理。边缘计算对于工业物联网而言非常重要。在许多应用程序中,由于数据量非常大,…...

利用NGROK将本地网站发布为一个公开网站

一般与第三方服务集成时,需要提供https的回调URL,本地开发阶段可以利用NGROK将本地网站发布为公开的https网站。https://ngrok.com/downloadWindow下载地址:https://bin.equinox.io/c/bNyj1mQVY4c/ngrok-v3-stable-windows-amd64.zip以Window…...

Vulnhub 渗透练习(一)—— Breach 1.0

环境搭建 环境下载: https://www.vulnhub.com/entry/breach-1,152/ 环境描述: Vulnhub 中对此环境的描述: VM 配置有静态 IP 地址 (192.168.110.140),因此您需要将仅主机适配器配置到该子网。 这里我用的是 VMware &#xff0…...

初探Spring采用Spring配置文件管理Bean

文章目录Spring容器演示--采用Spring配置文件管理Bean(一)创建Maven项目(二)添加Spring依赖(三)创建杀龙任务类(四)创建勇敢骑士类(五)采用传统方式让勇敢骑士…...

【手写 Vuex 源码】第十二篇 - Vuex 插件机制的实现

一,前言 上一篇,主要介绍了 Vuex 插件的开发,主要涉及以下几个点: Vuex 插件的使用介绍;Vuex 插件开发和使用分析;Vuex 插件机制的分析; 本篇,继续介绍 Vuex 插件机制的实现&…...

图像去噪技术简述

随着每天拍摄的数字图像数量激增,对更准确、更美观的图像的需求也在增加。然而,现代相机拍摄的图像不可避免地会受到噪声的影响,从而导致视觉图像质量下降。因此,需要在不丢失图像特征(边缘、角和其他尖锐结构&#xf…...

数据迁移——技术选型

日常我们在开发中,随着业务需求的变更,重构系统是很常见的事情。重构系统常见的一个场景是变更底层数据模型与存储结构。这种情况下就要对数据进行迁移,从而使业务能正常支行。 背景如下:老系统中使用了mongo数据库,由…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...