当前位置: 首页 > news >正文

「4」线性代数(期末复习)

🚀🚀🚀大家觉不错的话,就恳求大家点点关注,点点小爱心,指点指点🚀🚀🚀 

目录

第四章 向量组的线性相关性

&2)向量组的线性相关性

&3)向量组的秩

&4)线性方程组的解的结构


 

第四章 向量组的线性相关性

&2)向量组的线性相关性

定义4:给定向量组A:a[1],a[2],…,a[m];如果存在不全为零的数k[1],k[2],…,k[m],使
k[1]a[1]+k[2]a[2]+…+k[m]a[m]=0
则称向量组A是线性相关的,否则它就线性无关
定理4    向量组A:a[1],a[2],…,a[m]线性相关的充分必要条件是它所构成的矩阵A=(a[1],a[2],…,a[m])的秩小于向量个数m;向量组A线性无关的充分必要条件是R(A)=m
定理5    (1)若向量组A:a[1],a[2],…,a[m];线性相关,则向量组B:a[1],a[2],…,a[m],a[m+1]也线性相关(R(A)<m,则R(A)+1<m+1,所以R(B)<m+1)。反之,向量组B线性无关,则向量组A也线性无关(R(B)=m+1,则R(A)+1=m+1,所以R(A)=m)
(2)m个n维向量组成的向量组,当维数n小于向量的个数m时一定线性相关,特别地n+1个n维向量一定线性相关(R(A)<n+1))。
(3)设向量组A:a[1],a[2],…,a[m];线性无关,而
量组B:a[1],a[2],…,a[m],b线性相关,则向量b必能由向量组A线性表示,且表示式惟一

&3)向量组的秩

定义5:设有向量组A,如果在A中能选出r个向量a[1],a[2],…,a[r],满足
(i)向量组A:a[1],a[2],…,a[r]线性无关
(ii)向量组A中仍意r+1个向量(如果A中r+1个向量的话)都是线性相关的,那么称向量组A[0]是向量组A的最大线性无关向量组(简称最大无关组),最大无关组所含向量个数r称为向量组A的秩,记作R[A]
推论(最大无关组的等价定义):设向量组A[0]:a[1],a[2],…,a[r]是向量组A的一个部分组,且满足
(i)向量组A[0]线性无关
(ii)向量组A的任一向量都能由向量组A[0]线性表示,那么向量组A[0]便是向量组A的一个最大无关组
定理6    矩阵的秩等于它列向量的秩,也等于行向量的秩
极大无关组不唯一

&4)线性方程组的解的结构

Ax=0(*)
性质1    若x=𝜉[1],x=𝜉[2]为方程组(*)的解,则x=𝜉[1]+𝜉[2]也是方程(*)的解
性质2    若x=𝜉[1]为向量方程(*)的解,k为实数,则x=k𝜉[1]也是向量方程(*)的解
定理7    设mxn矩阵A的秩R[A]=r,则n元齐次线性方程组Ax=0的解集S的秩R[s]=n-r
 Ax=b(#)
性质3    设x=𝜂[1]及x=𝜂[2]都是向量方程(#)的解,则x=𝜂[1]-𝜂[2]为对应的齐次线性方程组Ax=0的解
​​​​​​​🌸🌸🌸如果大家还有不懂或者建议都可以发在评论区,我们共同探讨,共同学习,共同进步。谢谢大家! 🌸🌸🌸    

相关文章:

「4」线性代数(期末复习)

&#x1f680;&#x1f680;&#x1f680;大家觉不错的话&#xff0c;就恳求大家点点关注&#xff0c;点点小爱心&#xff0c;指点指点&#x1f680;&#x1f680;&#x1f680; 目录 第四章 向量组的线性相关性 &2&#xff09;向量组的线性相关性 &3&#xff09;向…...

IDEA中使用tomcat8-maven-plugin插件

第一种方式 pom.xml <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.or…...

2023年妇女节是哪一天 妇女节是2023年几月几日?

2023年妇女节是哪一天是2023年几月几日&#xff1f; 2023年妇女节是2023年3月8日 三八妇女节是国家法定节假日吗&#xff1f; 妇女节不是国家法定节假日&#xff0c;而国家法定节假日包括&#xff1a;元旦、春节、清明节、劳动节、端午节、中秋节、国庆节&#xff1b; 关于三…...

如何运维多集群数据库?58 同城 NebulaGraph Database 运维实践

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SktQW2qn-1676450580889)(https://www-cdn.nebula-graph.com.cn/nebula-website-5.0/images/blogs/58.%20Com%20Inc/58%E5%90%8C%E5%9F%8E_%E7%94%BB%E6%9D%BF%201.jpg)] 图计算业务背景介绍 我们为什…...

尚医通(十四)Spring Cloud GateWay网关 | 跨域 | 权限认证

目录一、网关基本概念1、API网关介绍2、Spring Cloud Gateway3、Spring Cloud Gateway核心概念二、创建service_gateway模块&#xff08;网关服务&#xff09;1、创建service_gateway模块2、在pom.xml引入依赖3、编写application.properties配置文件4、编写启动类5、前端端口号…...

PO模式在Selenium中简单实践

初识PO模式 PO&#xff08;PageObject&#xff09;是一种设计模式。简单来说就是把一些繁琐的定位方法、元素操作方式等封装到类中&#xff0c;通过类与类之间的调用完成特定操作。 PO被认为是自动化测试项目开发实践的最佳设计模式之一。 在学习PO模式前&#xff0c;可以先…...

KubeSphere

文章目录一、概述二、最小化安装 KubeSphere2.1 前提2.2 安装 nfs 服务器一、概述 KubeSphere是在Kubernetes之上构建的以应用为中心的企业级分布式容器平台&#xff0c;提供简单易用的操作界面以及向导式操作方式&#xff0c;在降低用户使用容器调度平台学习成本的同时&#…...

JAVA基础阶段面试题(关键点)必备

1、简述什么是 JDK、JRE 和 JVM&#xff1f; JDK : 开发工具包JRE : 运行时环境JVM : java虚拟机2、写出Java的四类八种基本数据类&#xff1f;整数 byte short int long小数(浮点) float double布尔 boolean字符 char3、& 和 && 的区别 ?& 符号的左右两边,无…...

Shiro简介

介绍 ApacheShiro 是一个功能强大且易于使用的 Java 安全(权限)框架。Shiro 可以完成:认证、授权、加密、会话管理、与 Web集成、缓存等。借助Shiro 您可以快速轻松地保护任何应用程序一一从最小的移动应用程序到最大的 Web 和企业应用程序。 1.2:为什么要用 shiro 自2003年以…...

cmu 445 poject 3笔记

2022年的任务 https://15445.courses.cs.cmu.edu/fall2022/project3/ task1, 从磁盘读取数据的算子 task2, 聚合和join算子 task3, sort,limit,topn算子&#xff0c;以及sortlimit->TopN优化 leaderboard没做 本文不写代码&#xff0c;只记录遇到的一些思维盲点 Task1 scan…...

CHAPTER 2 Zabbix界面操作

Zabbix界面操作2.1 Zabbix界面操作1.zabbix的web界面安装2.添加监控信息3.查看监控内容4.查看图像2.2 自定义监控与监控报警1.自定义监控1.1 说明1.2 预备知识2.实现自定义监控2.1 自定义语法2.2 agent注册2.3 在server端注册(web操作)2.4 查看监控图形2.3 监控报警1.第三方报警…...

keep-alive的使用-及遇到的问题

被keep-alive包括的的组件&#xff0c;当组件切换是不是走销毁流程&#xff0c;而是缓存起来 keep-alive有三个参数include匹配name名被缓存&#xff0c;exclude匹配name名不会被缓存&#xff0c;max被缓存组件数量 不写&#xff0c;组件默认全部缓存 <keep-alive ><…...

华为OD面试经验分享,尤其注意机试题部分

文章目录招聘流程和背景介绍面试准备机试题目类型和解答技巧在算法部分在操作系统部分面试官提问和答题技巧面试总结和建议推荐一些华为 od 常见的机试题题目&#xff1a;两数之和题目&#xff1a;二叉树的遍历题目&#xff1a;链表反转题目&#xff1a;最大子序和招聘流程和背…...

【Java】String、StringBuffer、StringBuilder的区别

一、String 由 char[] 数组构成&#xff0c;使用了 final 修饰&#xff0c;String的值是不可变的&#xff0c;这就导致每次对String的操作都会生成新的String对象&#xff0c;然后把指针指向新的引用对象&#xff0c;不仅效率低下&#xff0c;而且浪费大量优先的内存空间。 二…...

iOS开发:对Block使用的一次研究总结

在开发中Block是经常使用的,那我们就得知其然,知其所以然。 Block是什么? Block可以封装一个匿名函数为对象,并捕获上下文所需的数据,并传给目标对象在适当的时候回调。我们使用Block的目的其实就是回调传值,那我们去看看Block的底层,再深入了解一下Block。 Block的底…...

Spark 3.1.1 shuffle fetch 导致shuffle错位的问题

背景 最近从数据仓库小组那边反馈了一个问题,一个SQL任务出来的结果不正确&#xff0c;重新运行一次之后就没问题了&#xff0c;具体的SQL如下&#xff1a; select col1,count(1) as cnt from table1 where dt 20230202 group by col1 having count(1) > 1这个问题是偶发…...

2月第2周榜单丨飞瓜数据B站UP主排行榜(哔哩哔哩平台)发布!

飞瓜轻数发布2023年2月6日-2月12日飞瓜数据UP主排行榜&#xff08;B站平台&#xff09;&#xff0c;通过充电数、涨粉数、成长指数三个维度来体现UP主账号成长的情况&#xff0c;为用户提供B站号综合价值的数据参考&#xff0c;根据UP主成长情况用户能够快速找到运营能力强的B站…...

Jdk19 动态编译 Java源码为 Class 文件

动态编译 Java 源码为 Class一.背景1.Jdk 版本2.需求二.Java 源码动态编译实现1.Maven 依赖2.源码包装类3.Java 文件对象封装类4.文件管理器封装类5.类加载器6.类编译器三.动态编译测试1.普通测试类2.接口实现类3.测试四.用动态编译 Class 替换 SpringBoot 的 Bean&#xff08;…...

安装 GPU 版本的 tensorflow 完整版本

前言&#xff1a; 之前安装的 CPU 版本的 tensorflow 一直出问题&#xff0c;索性就直接安装 GPU 版本的 tensorflow 了&#xff08;有了GPU 就不能浪费&#xff09;。 安装过程&#xff1a; 1&#xff09;看自己有无 GPU&#xff0c;找到对应 GPU 的版本&#xff1a;任务管理…...

BOM编程-设置地址栏上的URL

<!DOCTYPE html> <html> <head> <meta charset"utf-8"> <title>设置地址栏上的URL</title> </head> <body> <script> function go(){ // 获…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

EtherNet/IP转DeviceNet协议网关详解

一&#xff0c;设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络&#xff0c;本网关连接到EtherNet/IP总线中做为从站使用&#xff0c;连接到DeviceNet总线中做为从站使用。 在自动…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

tomcat指定使用的jdk版本

说明 有时候需要对tomcat配置指定的jdk版本号&#xff0c;此时&#xff0c;我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...