当前位置: 首页 > news >正文

AI一点通:使用 ColumnTransformer 转换 Pandas DataFrame 的一个或多个列

在处理表格数据时,常常需要对一个或多个列进行转换以使它们更适合于分析或建模。在许多情况下,可以使用 Pandas 库轻松完成这些转换。然而,在处理大型数据集或构建机器学习管道时,使用 scikit-learn 的 ColumnTransformer 类来将转换应用于数据的特定列可能更有效。

这里,我们将演示如何使用自定义转换器与 scikit-learn 的 ColumnTransformer 来转换 Pandas DataFrame 的一个或多个列。

示例1:转换 NumPy 数组

让我们从一个简单的示例开始,我们有一个具有三个列的 NumPy 数组,并且我们希望将前两列转换为两个新列。

import numpy as np
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipelineclass CustomTransformer(BaseEstimator, TransformerMixin):def __init__(self):passdef transform(self, X):# 这里,X 是一个二维的 NumPy 数组或 Pandas DataFrame# 将第0列和第1列转换成多列transformed_cols = np.column_stack([X[:, 0]**2, np.sqrt(X[:, 1])])# 将转换后的列作为二维 NumPy 数组返回return transformed_colsdef fit(self, X, y=None):return self# 示例用法
X = np.array([[1, 4, 7], [2, 9, 8], [3, 16, 9]])
transformer = ColumnTransformer(transformers=[('custom', CustomTransformer(), [0, 1])],remainder='passthrough')
# 'remainder' 参数保留未转换的任何列
transformed_X = transformer.fit_transform(X)
print(transformed_X)

在这个例子中,CustomTransformer 类接受两个输入列并将它们转换为两个输出列。ColumnTransformer 将这个转换器应用到输入数据的第0列和第1列,并保留第2列。“passthrough” 选项被用来保留其原始形式的其余列。

示例2:转换 Pandas DataFrames

现在,让我们修改之前的示例,使其适用于 Pandas DataFrame 而不是 NumPy 数组。

import pandas as pd
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipelineclass CustomTransformer(BaseEstimator, TransformerMixin):def __init__(self):passdef transform(self, X):# Here, X is a pandas DataFrame# Transform columns 'A' and 'B' into multiple columnstransformed_cols = pd.DataFrame({'A_squared': X['A']**2, 'B_sqrt': X['B']**0.5})# Return the transformed columns as a pandas DataFramereturn transformed_colsdef fit(self, X, y=None):return self# Example usage
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 9, 16], 'C': [7, 8, 9]})
transformer = ColumnTransformer(transformers=[('custom', CustomTransformer(), ['A', 'B'])], remainder='passthrough')
# The 'remainder' parameter preserves any columns not transformed
transformed_df = transformer.fit_transform(df)
print(transformed_df)

在此示例中,CustomTransformer 类采用两个输入列(“A”和“B”)并将它们转换为 pandas DataFrame 中的两个输出列(“A_squared”和“B_sqrt”)。 ColumnTransformer 将此转换器应用于输入数据的“A”列和“B”列,并保留“C”列。 “passthrough”选项已用于以其原始形式保留剩余的列“C”。

英文链接

英文版

最后的话

AI日新月异,但是万丈高楼拔地起,离不开良好的基础。您是否有兴趣了解人工智能的原理和实践? 不要再观望! 我们关于 AI 原则和实践的书是任何想要深入了解 AI 世界的人的完美资源。 由该领域的领先专家撰写,这本综合指南涵盖了从机器学习的基础知识到构建智能系统的高级技术的所有内容。 无论您是初学者还是经验丰富的 AI 从业者,本书都能满足您的需求。 那为什么还要等? 立即下单,开始以一种易于访问、引人入胜且实用的方式学习 AI。

人工智能原理与实践 全面涵盖人工智能和数据科学各个重要体系经典

北大出版社,人工智能原理与实践 人工智能和数据科学从入门到精通 详解机器学习深度学习算法原理

相关文章:

AI一点通:使用 ColumnTransformer 转换 Pandas DataFrame 的一个或多个列

在处理表格数据时,常常需要对一个或多个列进行转换以使它们更适合于分析或建模。在许多情况下,可以使用 Pandas 库轻松完成这些转换。然而,在处理大型数据集或构建机器学习管道时,使用 scikit-learn 的 ColumnTransformer 类来将转…...

【C语言】全局变量、局部变量和静态变量的区别

目录一、变量(一)全局变量(二)局部变量(三)静态变量(1)静态全局变量(2)静态局部变量二、常量一、变量 1、变量定义 变量的名称可以由字母、数字和下划线字符…...

血氧仪「上潜」,智能穿戴「下沉」

文|智能相对论作者|沈浪缺货、涨价、一“仪”难求......过去短短的几周,血氧仪市场持续走热,受到前所未有的关注,像鱼跃医疗这样的业内巨头更是赚得盆满钵满,但同时也深陷“发国难财”的舆论泥潭,说来也是唏嘘。尽管目…...

CPP2022-计算机类-期末考试

6-1 判断素数 分数 5 全屏浏览题目 切换布局 作者 李国瑞 单位 东北大学秦皇岛分校 设计一个函数,判断输入数据是否为素数,返回bool类型结果。 函数接口定义: bool prime(int num); 说明:num为正整数。 裁判测试程序样例&…...

【蓝桥集训】第二天——差分

作者:指针不指南吗 专栏:Acwing 蓝桥集训每日一题 🐾做题过程中首先应该注意时间复杂度问题🐾 文章目录1.改变数组元素2.差分3.差分矩阵1.改变数组元素 给定一个空数组 V 和一个整数数组 a1,a2,…,an。 现在要对数组 V 进行 n 次操…...

Spring Boot最核心的27个注解,你了解多少?

https://blog.csdn.net/ManuMAX/article/details/129017443 导读 Spring Boot方式的项目开发已经逐步成为Java应用开发领域的主流框架,它不仅可以方便地创建生产级的Spring应用程序,还能轻松地通过一些注解配置与目前比较火热的微服务框架SpringCloud集成…...

css3弹性盒子

弹性盒子由弹性容器(Flex container)和弹性子元素(Flex item)组成。 弹性容器通过设置 display 属性的值为 flex 或 inline-flex将其定义为弹性容器。 弹性容器内包含了一个或多个弹性子元素。 display:flex; 修改排列方式: 0. direction: rtl; //(right-to-left),弹性子元素的…...

数据分析与SAS学习笔记2

SAS在企业使用的情况: SAS是一个很昂贵的商业软件。在企业中使用SAS比较多,在企业界中是比较流行,在学术界使用R比较多。 SAS简介:统计分析系统 处理生物分析数据。 SAS成为统计领域的国际标准软件,服务全球50000多家…...

零信任-Akamai零信任介绍(6)

​Akamai零信任介绍 Akamai是一家专注于分布式网络服务的公司,它提供了一系列的互联网内容和应用加速服务。关于Akamai的零信任,它指的是Akamai的安全架构中不存在任何一个环节是可以被单独的控制或影响的,因此可以提供更高的安全性。通过使…...

表现良好的最长时段[前缀和思想子数组]

前缀和与最长子数组前言一、表现良好的最长时间段二、前缀和思想&子数组1、前缀和&map2、前缀和&单调栈总结参考文献前言 对于子数组/子串问题,紧密连续前缀和/滑动窗口/单调栈;挖掘内在规律,可以简化代码,降低时空复…...

Python 获取当前系统时间

在有的时候,系统不能联网,需要获取系统的当前实现,此时需要python的datetime库。 一、使用方法 1. 导入库:import datetime 2.获取当前日期和时间:now_time datetime.datetime.now() 3.格式化成我们想要的格式&am…...

pytorch基础入门教程

pytorch基础入门教程 Pytorch一小时入门教程 前言 机器学习的门槛并没有想象中那么高,我会陆续把我在学习过程中看过的一些文章和写过的代码以博客的形式分享给大家,和大家一起交流,这个是本系列的第一篇,pytoch入门教程&#x…...

RTSP协议交互时TCP/UDP的区别 以及视频和音频的区别 以及H264/H265的区别

经过这几天的调试 一个功能简单的 RTSP服务端已经实现了 支持TCP/UDP 支持H264 H265 支持同时传输 AAC音频 记录下 交互时需要注意的地方 1.OPTIONS 都一样 如下:左箭头内是客户端发给服务端 箭头内是服务端回给客户端 2.DESCRIBE 目前的流是包含视频和AAC音频…...

调用大智慧L2接口是什么原理?作用是什么?

有些开发人员想要设计一个微信公众号或者微信小程序,由于自己搭建数据库工作量太大,或者技术受限,也会选择调用大智慧L2接口减少工作量。调用大智慧L2接口是什么原理?作用是什么? 大智慧L2接口即应用程序编程接口&…...

数据结构 - 栈 与 队列 - (java)

前言 本篇介绍栈和队列,了解栈有顺序栈和链式栈,队列底层是双链表实现的,单链表也可以实现队列,栈和队列的相互实现和循环队列;如有错误,请在评论区指正,让我们一起交流,共同进步&a…...

CellularAutomata元胞向量机-8-渗流集群MATLAB代码分享

%% Percolation Clusterclf clc, clearthreshold .63; % ax axes(units,pixels,position,[1 1 650 700],color,k); text(units, pixels, position, [150,255,0],... string,美赛,color,w,fontname,helvetica,fontsize,100) text(units, pixels, position, [40,120,0],... str…...

iOS UI自动化测试详解

前言: 小目标 关于UI自动化的定义,我想要的是自动地按照流程去点击页面、输入数据,不需要人去参与,节省人工时间。比如登录,能够自己去填写用户名&密码,然后点击按钮跳转到下一个页面等。在能够保证业…...

Mybatis源码分析(九)Mybatis的PreparedStatement

文章目录一 JDBC的PreparedStatement二 prepareStatement的准备阶段2.1 获取Connection2.1.1 **UnpooledDataSource**2.1.2 PooledDataSource2.2 Sql的预编译PreparedStatementHandler2.3 为Statement设置参数2.4 执行具体的语句过程官网:mybatis – MyBatis 3 | 简…...

winfrom ui

http://www.iqidi.com/download/warehouse/Device_DotNetBar.rar http://qiosdevsuite.com/Download https://sourceforge.net/projects/qiosdevsuite/ https://www.cnblogs.com/hcyblogs/p/6758381.html https://www.cnblogs.com/jordonin/p/6484366.html MBTiles地图瓦片管…...

中国国家级地面气象站基本气象要素日值数据集(V3.0)

数据集摘要 数据集包含了中国基本气象站、基准气候站、一般气象站在内的主要2474个站点1951年1月以来本站气压、气温、降水量、蒸发量、相对湿度、风向风速、日照时数和0cm地温要素的日值数据。数据量为21.3GB。 (1)SURF_CLI_CHN_MUL_DAY-TEM-12001-201501.TXT 气温数据TEM, 包…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...

群晖NAS如何在虚拟机创建飞牛NAS

套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下: 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载,下载地址:https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型

本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...

【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统

Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...

Yii2项目自动向GitLab上报Bug

Yii2 项目自动上报Bug 原理 yii2在程序报错时, 会执行指定action, 通过重写ErrorAction, 实现Bug自动提交至GitLab的issue 步骤 配置SiteController中的actions方法 public function actions(){return [error > [class > app\helpers\web\ErrorAction,],];}重写Error…...