当前位置: 首页 > news >正文

研学网站平台建设方案/苏州新闻今天最新消息新闻事件

研学网站平台建设方案,苏州新闻今天最新消息新闻事件,自己做的砍价网站,seo外链网这篇文章是关于存储缓冲区的&#xff0c;我们从上一篇文章暂停的地方继续。 存储缓冲区在许多方面类似于统一缓冲区。如果我们所做的只是将 JavaScript 中的 UNIFORM 更改为 STORAGE 并将 WGSL 中的 var 更改为 var<storage, read> &#xff0c;那么上一页中的示例就可以…

这篇文章是关于存储缓冲区的,我们从上一篇文章暂停的地方继续。

存储缓冲区在许多方面类似于统一缓冲区。如果我们所做的只是将 JavaScript 中的 UNIFORM 更改为 STORAGE 并将 WGSL 中的 var 更改为 var<storage, read> ,那么上一页中的示例就可以正常工作。

其实区别就在这里,不用重命名变量就可以有更合适的名字。

    const staticUniformBuffer = device.createBuffer({label: `static uniforms for obj: ${i}`,size: staticUniformBufferSize,// usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,});...const uniformBuffer = device.createBuffer({label: `changing uniforms for obj: ${i}`,size: uniformBufferSize,// usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST,usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,});

在我们的 WSGL 中

      @group(0) @binding(0) var<storage, read> ourStruct: OurStruct;@group(0) @binding(1) var<storage, read> otherStruct: OtherStruct;

无需其他更改即可正常工作,就像以前一样
在这里插入图片描述

统一缓冲区和存储缓冲区之间的差异 Differences between uniform buffers and storage buffers

统一缓冲区和存储缓冲区之间的主要区别是:

  1. 对于特定的用例,统一缓冲区可以更快
    这真的取决于用例。一个典型的应用程序需要绘制很多不同的东西。对于3D游戏,该应用程序可能会绘制汽车、建筑物、岩石、灌木丛、人等……每一个都需要传递与我们上面的示例类似的方向和材料属性。在这种情况下,使用统一缓冲区是推荐的解决方案。

  2. 存储缓冲区可以比统一缓冲区大得多。

    The minimum maximum size of a uniform buffer is 64k
    统一缓冲区的最小最大大小为64k
    The minimum maximum size of a storage buffer is 128meg
    存储缓冲区的最小最大大小为 128meg

    By minimum maximum, there is a maximum size a
    buffer of certain type can be. For uniform buffers that maximum size
    is at least 64k. For storage buffers it’s at least 128meg. We’ll
    cover limits in another article.
    通过最小最大值,某种类型的缓冲区可以达到最大大小。对于最大大小至少为
    64k 的统一缓冲区。对于存储缓冲区,它至少为 128 兆。我们将在另一篇文章中介绍限制。
    3.存储缓冲区可以读/写,统一缓冲区是只读
    我们在第一篇文章的计算着色器示例中看到了写入存储缓冲区的示例。

鉴于上面的前两点,让我们以最后一个示例为例,将其更改为在一次绘制调用中绘制所有 100 个三角形。这是一个可能适合存储缓冲区的用例。我说可能是因为,WebGPU 与其他编程语言相似。有很多方法可以实现同一件事,比如 array.forEach 对比 for (const elem of array) 对比 for (let i = 0; i < array.length; ++i) 。每个都有它的用途。 WebGPU 也是如此。我们尝试做的每一件事都有多种实现方式。当谈到绘制三角形时**,WebGPU 关心的只是我们从顶点着色器返回 builtin(position) 的值**,并从片段着色器返回 location(0) 的颜色/值。 见【注释1】

我们要做的第一件事是将存储声明更改为运行时大小的数组。

// @group(0) @binding(0) var<storage, read> ourStruct: OurStruct;
// @group(0) @binding(1) var<storage, read> otherStruct: OtherStruct;
@group(0) @binding(0) var<storage, read> ourStructs: array<OurStruct>;
@group(0) @binding(1) var<storage, read> otherStructs: array<OtherStruct>;

然后我们将更改着色器以使用这些值

@vertex fn vs(@builtin(vertex_index) vertexIndex : u32,@builtin(instance_index) instanceIndex: u32
) -> @builtin(position) {var pos = array<vec2f, 3>(vec2f( 0.0,  0.5),  // top centervec2f(-0.5, -0.5),  // bottom leftvec2f( 0.5, -0.5)   // bottom right);let otherStruct = otherStructs[instanceIndex];let ourStruct = ourStructs[instanceIndex];return vec4f(pos[vertexIndex] * otherStruct.scale + ourStruct.offset, 0.0, 1.0);
}

我们向顶点着色器添加了一个名为 instanceIndex 的新参数,并赋予它 @builtin(instance_index) 属性,这意味着它从 WebGPU 为绘制的每个“实例”获取其值。当我们调用 draw 时,我们可以传递实例数的第二个参数,对于绘制的每个实例,正在处理的实例数将传递给我们的函数。

使用 instanceIndex 可以从结构数组中获取指定的结构元素。

We also need to some get the color from the correct array element and use it in our fragment shader. The fragment shader doesn’t have access to @builtin(instance_index) because that would make no sense. We could pass it as an inter-stage variable but it would be more common to look up the color in the vertex shader and just pass the color.
我们还需要从正确的数组元素中获取颜色,并在我们的片段着色器中使用它。片段着色器无法访问 @builtin(instance_index) ,因为那没有任何意义。我们可以将它作为阶段间变量传递,但更常见的做法是在顶点着色器中查找颜色并传递颜色。

为此,我们将使用另一个结构,就像我们在关于阶段间变量的文章中所做的那样

struct VSOutput {@builtin(position) position: vec4f,@location(0) color: vec4f,
}@vertex fn vs(@builtin(vertex_index) vertexIndex : u32,@builtin(instance_index) instanceIndex: u32
// ) -> @builtin(position) vec4f {
) -> VSOutput {var pos = array<vec2f, 3>(vec2f( 0.0,  0.5),  // top centervec2f(-0.5, -0.5),  // bottom leftvec2f( 0.5, -0.5)   // bottom right);let otherStruct = otherStructs[instanceIndex];let ourStruct = ourStructs[instanceIndex];// return vec4f(//  pos[vertexIndex] * otherStruct.scale + ourStruct.offset, 0.0, 1.0);var vsOut: VSOutput;vsOut.position = vec4f(pos[vertexIndex] * otherStruct.scale + ourStruct.offset, 0.0, 1.0);vsOut.color = ourStruct.color;return vsOut;
}// @fragment fn fs() -> @location(0) vec4f {
//   return ourStruct.color;
@fragment fn fs(vsOut: VSOutput) -> @location(0) vec4f {return vsOut.color;
}

现在我们已经修改了 WGSL 着色器,让我们更新 JavaScript。

代码如下:

  const kNumObjects = 100;const objectInfos = [];// create 2 storage buffersconst staticUnitSize =4 * 4 + // color is 4 32bit floats (4bytes each)2 * 4 + // offset is 2 32bit floats (4bytes each)2 * 4;  // paddingconst changingUnitSize =2 * 4;  // scale is 2 32bit floats (4bytes each)const staticStorageBufferSize = staticUnitSize * kNumObjects;const changingStorageBufferSize = changingUnitSize * kNumObjects;const staticStorageBuffer = device.createBuffer({label: 'static storage for objects',size: staticStorageBufferSize,usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,});const changingStorageBuffer = device.createBuffer({label: 'changing storage for objects',size: changingStorageBufferSize,usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,});// offsets to the various uniform values in float32 indicesconst kColorOffset = 0;const kOffsetOffset = 4;const kScaleOffset = 0;{const staticStorageValues = new Float32Array(staticStorageBufferSize / 4);for (let i = 0; i < kNumObjects; ++i) {const staticOffset = i * (staticUnitSize / 4);// These are only set once so set them nowstaticStorageValues.set([rand(), rand(), rand(), 1], staticOffset + kColorOffset);        // set the colorstaticStorageValues.set([rand(-0.9, 0.9), rand(-0.9, 0.9)], staticOffset + kOffsetOffset);      // set the offsetobjectInfos.push({scale: rand(0.2, 0.5),});}device.queue.writeBuffer(staticStorageBuffer, 0, staticStorageValues);}// a typed array we can use to update the changingStorageBufferconst storageValues = new Float32Array(changingStorageBufferSize / 4);const bindGroup = device.createBindGroup({label: 'bind group for objects',layout: pipeline.getBindGroupLayout(0),entries: [{ binding: 0, resource: { buffer: staticStorageBuffer }},{ binding: 1, resource: { buffer: changingStorageBuffer }},],});

上面我们创建了 2 个存储缓冲区。一个用于 OurStruct 数组,另一个用于 OtherStruct 数组。

然后我们用偏移量和颜色填充 OurStruct 数组的值,然后将该数据上传到 staticStorageBuffer 。

我们只创建一个引用两个缓冲区的绑定组。

新的渲染代码是

  function render() {// Get the current texture from the canvas context and// set it as the texture to render to.renderPassDescriptor.colorAttachments[0].view =context.getCurrentTexture().createView();const encoder = device.createCommandEncoder();const pass = encoder.beginRenderPass(renderPassDescriptor);pass.setPipeline(pipeline);// Set the uniform values in our JavaScript side Float32Arrayconst aspect = canvas.width / canvas.height;//for (const {scale, bindGroup, uniformBuffer, uniformValues} of objectInfos) {//   uniformValues.set([scale / aspect, scale], kScaleOffset); // set the scale//    device.queue.writeBuffer(uniformBuffer, 0, uniformValues);//  pass.setBindGroup(0, bindGroup);//    pass.draw(3);  // call our vertex shader 3 times// }// set the scales for each objectobjectInfos.forEach(({scale}, ndx) => {const offset = ndx * (changingUnitSize / 4);storageValues.set([scale / aspect, scale], offset + kScaleOffset); // set the scale});// upload all scales at oncedevice.queue.writeBuffer(changingStorageBuffer, 0, storageValues);pass.setBindGroup(0, bindGroup);pass.draw(3, kNumObjects);  // call our vertex shader 3 times for each instancepass.end();const commandBuffer = encoder.finish();device.queue.submit([commandBuffer]);}

上面的代码将绘制 kNumObjects 实例。对于每个实例,WebGPU 将调用顶点着色器 3 次, vertex_index 设置为 0、1、2, instance_index 设置为 0 到 kNumObjects - 1

在这里插入图片描述
我们绘制了 100 个三角形,每个三角形具有不同的比例、颜色和偏移量。对于您想要绘制同一对象的大量实例的情况,这是一种实现方法。

顶点数据使用存储缓冲区

到目前为止,我们一直在着色器中直接硬编码三角形。存储缓冲区的一个用例是存储顶点数据。就像我们在上面的示例中通过 instance_index 索引当前存储缓冲区一样,我们可以使用 vertex_index 索引另一个存储缓冲区来获取顶点数据。

我们开始吧!

struct OurStruct {color: vec4f,offset: vec2f,
};struct OtherStruct {scale: vec2f,
};struct Vertex {position: vec2f,
};struct VSOutput {@builtin(position) position: vec4f,@location(0) color: vec4f,
};@group(0) @binding(0) var<storage, read> ourStructs: array<OurStruct>;
@group(0) @binding(1) var<storage, read> otherStructs: array<OtherStruct>;
@group(0) @binding(2) var<storage, read> pos: array<Vertex>;@vertex fn vs(@builtin(vertex_index) vertexIndex : u32,@builtin(instance_index) instanceIndex: u32
) -> VSOutput {//var pos = array<vec2f, 3>(//  vec2f( 0.0,  0.5),  // top center//  vec2f(-0.5, -0.5),  // bottom left//  vec2f( 0.5, -0.5)   // bottom right//);let otherStruct = otherStructs[instanceIndex];let ourStruct = ourStructs[instanceIndex];var vsOut: VSOutput;vsOut.position = vec4f(pos[vertexIndex].position * otherStruct.scale + ourStruct.offset, 0.0, 1.0);vsOut.color = ourStruct.color;return vsOut;
}@fragment fn fs(vsOut: VSOutput) -> @location(0) vec4f {return vsOut.color;
}

现在我们需要为一些顶点数据再设置一个存储缓冲区。首先让我们创建一个函数来生成一些顶点数据。大概是一个圆。

function createCircleVertices({radius = 1,numSubdivisions = 24,innerRadius = 0,startAngle = 0,endAngle = Math.PI * 2,
} = {}) {// 2 triangles per subdivision, 3 verts per tri, 2 values (xy) each.const numVertices = numSubdivisions * 3 * 2;const vertexData = new Float32Array(numSubdivisions * 2 * 3 * 2);let offset = 0;const addVertex = (x, y) => {vertexData[offset++] = x;vertexData[offset++] = y;};// 2 vertices per subdivision//// 0--1 4// | / /|// |/ / |// 2 3--5for (let i = 0; i < numSubdivisions; ++i) {const angle1 = startAngle + (i + 0) * (endAngle - startAngle) / numSubdivisions;const angle2 = startAngle + (i + 1) * (endAngle - startAngle) / numSubdivisions;const c1 = Math.cos(angle1);const s1 = Math.sin(angle1);const c2 = Math.cos(angle2);const s2 = Math.sin(angle2);// first triangleaddVertex(c1 * radius, s1 * radius);addVertex(c2 * radius, s2 * radius);addVertex(c1 * innerRadius, s1 * innerRadius);// second triangleaddVertex(c1 * innerRadius, s1 * innerRadius);addVertex(c2 * radius, s2 * radius);addVertex(c2 * innerRadius, s2 * innerRadius);}return {vertexData,numVertices,};
}

上面的代码用这样的三角形制作了一个圆
在这里插入图片描述
所以我们可以用它来用圆的顶点填充存储缓冲区

  // setup a storage buffer with vertex dataconst { vertexData, numVertices } = createCircleVertices({radius: 0.5,innerRadius: 0.25,});const vertexStorageBuffer = device.createBuffer({label: 'storage buffer vertices',size: vertexData.byteLength,usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST,});device.queue.writeBuffer(vertexStorageBuffer, 0, vertexData);
And then we need to add it to our bind group.
然后我们需要将它添加到我们的绑定组中。const bindGroup = device.createBindGroup({label: 'bind group for objects',layout: pipeline.getBindGroupLayout(0),entries: [{ binding: 0, resource: { buffer: staticStorageBuffer }},{ binding: 1, resource: { buffer: changingStorageBuffer }},{ binding: 2, resource: { buffer: vertexStorageBuffer }},],});

最后在渲染时,我们需要要求渲染圆圈中的所有顶点。

    pass.draw(3, kNumObjects);  // call our vertex shader 3 times for several instancespass.draw(numVertices, kNumObjects);

在这里插入图片描述
上面我们用了

struct Vertex {pos: vec2f;
};@group(0) @binding(2) var<storage, read> pos: array<Vertex>;

我们可以不使用 struct 而直接使用 vec2f 。

@group(0) @binding(2) var<storage, read> pos: vec2f;

但是,通过使它成为一个结构,以后添加顶点数据不是更容易吗?

通过存储缓冲区传递顶点越来越受欢迎。有人告诉我,尽管一些较旧的设备比我们将在接下来的一篇关于顶点缓冲区中介绍的经典方法慢。


【注释1】We can have multiple color attachments and then we’ll need to return more colors/value for location(1), location(2), etc… ↩︎
我们可以有多个颜色附件,然后我们需要为 location(1) 、 location(2) 等返回更多颜色/值……↩︎

相关文章:

4. WebGPU 存储缓冲区 (WebGPU Storage Buffers)

这篇文章是关于存储缓冲区的&#xff0c;我们从上一篇文章暂停的地方继续。 存储缓冲区在许多方面类似于统一缓冲区。如果我们所做的只是将 JavaScript 中的 UNIFORM 更改为 STORAGE 并将 WGSL 中的 var 更改为 var<storage, read> &#xff0c;那么上一页中的示例就可以…...

ChatGPT 插件功能深度解析:acquire、scholarai、form

引言 在我们的日常工作中&#xff0c;插件扮演着重要的角色&#xff0c;它们可以帮助我们提高工作效率&#xff0c;简化复杂的任务。在这篇文章中&#xff0c;我将详细介绍三个非常实用的插件&#xff1a;acquire、scholarai和form。 1、acquire 插件详解 acquire插件是一个…...

【面试集锦 - 汽车电子 - ASPICE]

ASPICE ASPICE&#xff08;Automotive Software Performance Improvement and Capability dEtermination&#xff09;是一种针对汽车电子行业的软件过程评估和改进模型。它是一种国际标准&#xff0c;旨在帮助汽车制造商和供应商评估和改进其软件开发过程的能力&#xff0c;以…...

深入探索Vue.js响应式原理及其实现机制

导语&#xff1a;Vue.js的核心特性之一是其强大的响应式系统&#xff0c;它使得数据和视图能够自动保持同步。在本文中&#xff0c;我们将深入探索Vue.js的响应式原理及其实现机制&#xff0c;帮助您更好地理解Vue.js的工作方式。 数据劫持&#xff1a;Vue.js的响应式系统通过数…...

Spark SQL概述、数据帧与数据集

文章目录 一、准备工作1、准备数据文件2、启动Spark Shell 二、加载数据为Dataset1、读文件得数据集 三、给数据集添加元数据信息1、定义学生样例类2、导入隐式转换3、将数据集转换成学生数据集4、对学生数据集进行操作&#xff08;1&#xff09;显示数据集内容&#xff08;2&a…...

c# cad 二次开发 类库 CAD表格的操作,给CAD添加一个表格

c# cad 二次开发 类库 CAD表格的操作&#xff0c;给CAD添加一个表格 using Autodesk.AutoCAD.ApplicationServices; using Autodesk.AutoCAD.Colors; using Autodesk.AutoCAD.DatabaseServices; using Autodesk.AutoCAD.EditorInput; using Autodesk.AutoCAD.Geometry; using A…...

单点登录的两种实现方式,分别有啥优缺点?

单点登录&#xff08;Single Sign-On&#xff0c;简称SSO&#xff09;是指在多个应用系统中&#xff0c;用户只需要登录一次&#xff0c;就可以访问所有已授权的系统资源的一种身份认证技术。SSO可以提升用户体验&#xff0c;减少用户密码管理工作量&#xff0c;并加强安全管理…...

opencv_c++学习(二十七)

一、单目相机模型 上图为针孔相机成像原理&#xff0c;蓝色坐标中的O即为镜头光心。成像原理与小孔成像相同。 单目相机映射关系如下&#xff1a; 将上式进行变换&#xff0c;就可以从三位空间映射到2维平面的公式。 相机的畸变公式如下&#xff1a; 二、模型投影函数 vo…...

探查chatGPT插件:Outschool,resume,webhooks

引言 在我们的日常工作和学习中&#xff0c;插件扮演着重要的角色。它们可以帮助我们提高效率&#xff0c;简化复杂的任务。在这篇文章中&#xff0c;我将介绍三个非常有用的插件&#xff1a;Outschool&#xff0c;resume&#xff0c;和webhooks&#xff0c;并通过具体的例子来…...

【学习笔记】Unity基础(七)【uGUI基础、利用render Texture实现小地图功能】

目录 一 Canvas1.1 三种Render Space渲染空间 screen1.2 canvas scaler画布缩放器1.3sprite1.4 sprite packer1.5 unity目录1.6 RuleTile Tilemap1.7 sprite packer1.8 sorting layer 二 rect transform2.1 pivot 中轴 中心点2.2 anchor 锚点2.3 uGUI源代码 三 EventSystem3.1 …...

yolov5配置错误记录

这里是直接没有找到数据集&#xff0c;说明是路径错误。经过设置yaml后&#xff0c; # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../autodl-tmp/datasets/neu # dataset root dir tr…...

全平台数据 (数据库) 管理工具 DataCap 1.10.0 发布

当前版本涉及几个主要更新。 DataCap 已发布 发布版本发布时间1.10.02023-05-30 General 修复服务启动默认连接 mongo修复了 sql 模板的 h2 db update_time 和 create_time改进 H2 元数据管理获取类型改进 mysql 元数据管理获取类型固定元数据管理数据页默认为 1重构数据渲染…...

使用Mybatis接口开发

文章目录 目录 前言 公司项目用到了mybatis开发接口,虽然很简单,但是mybatis不是特别熟悉,这里学习一下 一、Mybatis接口绑定的两种方式 1.接口绑定实现方式 就是在接口的方法上加上Select,updateInsertDelete等注解 select注解介绍: 简便,能快速去操作sql,它只需要在mapper…...

数据采集技术的实现原理有哪些?

数据采集技术是指通过各种手段和技术手段&#xff0c;从互联网、移动设备、传感器等各种数据源中获取数据&#xff0c;并将其存储、处理和分析&#xff0c;以便为业务决策和应用提供支持。本文将介绍数据采集技术的实现原理&#xff0c;包括数据采集的基本流程、数据采集技术的…...

2023年数学建模随机森林:基于多个决策树的集成学习方法

2023年9月数学建模国赛期间提供ABCDE题思路加Matlab代码,专栏链接(赛前一个月恢复源码199,欢迎大家订阅):http://t.csdn.cn/Um9Zd 目录 目录 1. 什么是随机森林? 2. 随机森林的优缺点 3. 随机森林的构建过程...

OpenAI发布最新研究让大模型数学推理直接达到SOTA

&#x1f989; AI新闻 &#x1f680; OpenAI发布最新研究&#xff1a;基于过程奖励的监督方法&#xff0c;让大模型数学推理直接达到SOTA 摘要&#xff1a;OpenAI最新研究基于GPT-4微调&#xff0c;采用过程监督和结果监督两种监督方法&#xff0c;奖励每个正确推理步骤的过程…...

快速检测 GlassFish 任意文件读取漏洞的 Python 脚本

部分数据来源:ChatGPT 引言 当下,互联网安全问题正愈发严重,黑客利用各种漏洞进行攻击的频率也在持续增加。在2015年10月,一位名为“路人甲”的安全研究员在乌云上公开了一个名为“应用服务器glassfish存在通用任意文件读取漏洞”的漏洞(编号:wooyun-2010-0144595),该…...

Docker镜像更新通知器DIUN

什么是 DIUN ? Docker Image Update Notifier 是一个用 Go 编写的 CLI 应用程序&#xff0c;可作为单个可执行文件和 Docker 映像交付&#xff0c;用于当 Docker 映像在 Docker registry中更新时接收通知。 和老苏之前介绍过的 watchtower 不同&#xff0c;DIUN 只是通知&…...

插件框架PF4J-从理论到实践

PF4J:Plugin Framework for Java 目录 是什么&#xff1f; 不是什么&#xff1f; 特点 组件 主要类 流程概述 spring-pf4j 思考 功能模块化 我对pf4j的封装和使用demo GitHub - chlInGithub/pf4jDemo: pf4j demo 是什么&#xff1f; 开源轻量级的插件框架。通过插件…...

怎么将pdf文件免费转为扫描件

推荐两个工具&#xff0c;也算是给自己记一下 1、手机&#xff1a;扫描全能王APP 太好使了&#xff0c;可以直接拍照并转换为扫描件 不开会员的话会出现水印&#xff0c;因为我都是自己用或者交作业就没开 支持读取相册&#xff0c;一次一张、多张都可以 如果不想要水印也…...

vue+nodejs校园二手物品交易市场网站_xa1i4

。为满足如今日益复杂的管理需求&#xff0c;各类管理系统程序也在不断改进。本课题所设计的校园二手交易市场&#xff0c;使用vue框架&#xff0c;Mysql数据库、nodejs语言进行开发&#xff0c;它的优点代码不能从浏览器查看&#xff0c;保密性非常好&#xff0c;比其他的管理…...

Barra模型因子的构建及应用系列六之Book-to-Price因子

一、摘要 在前期的Barra模型系列文章中&#xff0c;我们构建了Size因子、Beta因子、Momentum因子、Residual Volatility因子和NonLinear Size因子&#xff0c;并分别创建了对应的单因子策略&#xff0c;其中Size因子和NonLinear Siz因子具有很强的收益能力。本节文章将在该系列…...

【c语言习题】使用链表解决约瑟夫问题

创作不易&#xff0c;本篇文章如果帮助到了你&#xff0c;还请点赞 关注支持一下♡>&#x16966;<)!! 主页专栏有更多知识&#xff0c;如有疑问欢迎大家指正讨论&#xff0c;共同进步&#xff01; &#x1f525;c语言系列专栏&#xff1a;c语言之路重点知识整合 &#x…...

JVM之类的初始化与类加载机制

类的初始化 clinit 初始化阶段就是执行类构造器方法clinit的过程。此方法不需定义&#xff0c;是javac编译器自动收集类中的所有类变量的赋值动作和静态代码块中的语句合并而来。构造器方法中指令按语句在源文件中出现的顺序执行。clinit不同于类的构造器。(关联&#xff1a;…...

面试专题:java 多线程(1)----synchronized关键字相关问答

在java 多线程 面试中最多问题1.悲观锁和乐观锁&#xff1b;2.synchronized和lock的区别&#xff1b;3.可重入锁和非可重入锁的区别&#xff1b;4.多线程是解决什么问题的&#xff1b;5.线程池解决什么问题的&#xff1b;6.线程池原理&#xff1b;7.线程池使用注意事项&#xf…...

VMware SD-WAN 5.2 发布 - 软件定义的 WAN

VMware SD-WAN 5.2 发布 - 软件定义的 WAN SD-WAN 解决方案的领导者 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-sd-wan-5/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org 产品概述 软件定义的 WAN (SD-WAN)…...

Oracle+11g+RAC+PSU_EAM(2)

2.15 解压安装介质 在获取开篇1.2节中提到的安装介质如下&#xff1a; [rootebsrac1 ~]# ls -l -rw-r–r– 1 root root 1358454646 Apr 20 16:22 p13390677_112040_Linux-x86-64_1of7.zip -rw-r–r– 1 root root 1142195302 Apr 20 16:29 p13390677_112040_Linux-x86-64_…...

智能出行 驱动未来|2023 开放原子全球开源峰会 CARSMOS 开源智能出行生态年会即将启幕

由开放原子开源基金会主办&#xff0c;元遨 / CARSMOS 开源智能出行项目组协办&#xff0c;深信科创、Futurewei Technologies、Open Motors、北极雄芯等单位共同承办的 2023 开放原子全球开源峰会 “CARSMOS 开源智能出行生态年会” 将于 6 月 12 日在北京经开区北人亦创国际会…...

Linux:centos:周期性计划任务管理《crontab》

crontab常用基础属性 -e 编辑计划任务 -l 查看计划任务 -r 删除计划任务 -u 指定用户的计划任务 首先创建一个名为test的用户名 crontab时间规定 格式&#xff1a;分钟 小时 日期 月份 星期 命令 分钟-- 0-59整数 小时 -- 0-23整数 日期 -- 1--31 整数 月份 -- 1-12 整数 星期…...

克拉默法则证明(Cramer‘s Rule)

若 n 个方程 n 个未知量构成的非齐次线性方程组&#xff1a; { a 11 x 1 a 12 x 2 . . . a 1 n x n b 1 a 21 x 1 a 22 x 2 . . . a 2 n x n b 2 . . . . . . a n 1 x 1 a n 2 x 2 . . . a n n x n b n \begin{equation*} \begin{cases} a_{11}x_{1} a_ {12}x_{2}…...