当前位置: 首页 > news >正文

ARC140D One to One

ARC140D One to One

题目大意

对于一个长度为nnn的整数序列X=(x1,x2,…xn)X=(x_1,x_2,\dots x_n)X=(x1,x2,xn),每个元素都在111nnn之间,令f(X)f(X)f(X)表示以下问题的答案:

  • 有一个nnn个顶点nnn条边的无向图(可能有重边和自环),第iii条边连接iiiXiX_iXi,求联通块的数量

给一个正整数nnn和一个长度为nnn的序列A=(a1,a2…an)A=(a_1,a_2\dots a_n)A=(a1,a2an),其每一个元素都在111nnn之间,或者为−1-11

你可以将每个值为−1-11aia_iai变为任意一个111nnn之间的数,求所有情况下f(A)f(A)f(A)的和。输出答案对998244353998244353998244353取模。


题解

kkk表示ai=−1a_i=-1ai=1的元素的个数。

我们可以先将ai≠−1a_i\neq -1ai=1的边连上,那么现在图上的每一个连通块都是树或环或基环树。

如果是树的话,则这个连通块有且只有一个ai=−1a_i=-1ai=1的点

如果是环或基环树的话,则这个连通块没有ai=−1a_i=-1ai=1的点

我们可以先把环和基环树的贡献算出来,每个环或基环树的贡献为nkn^knk,因为不管怎么连,环或基环树都会有111的贡献。那么如果有树向环或基环树连边,则这棵树不计算贡献。

树与环或基环树连边的贡献不需计算,那么我们只需要求树与树连边的贡献了。

因为每棵树只有一条边连出去,所以我们可以将每棵树看成一个点。

如果不连向环和基环树,那么这些树一定会形成一个环。对于一个顺序已确定的环,形成这样的环的方案数为∏sizi\prod siz_isizi

我们考虑DP。设fif_ifi表示形成长度为iii的环的方案数,那么对于每个点jjj,有转移式

fi=fi+fi−1×sizkf_i=f_i+f_{i-1}\times siz_kfi=fi+fi1×sizk

求出fff后我们考虑如何计算答案。对于所有长度为iii的环的贡献为fi×(i−1)!×nk−if_i\times (i-1)!\times n^{k-i}fi×(i1)!×nki。其中(i−1)!(i-1)!(i1)!表示iii个点按不同顺序可以构成(i−1)!(i-1)!(i1)!个不同的环,nk−in^{k-i}nki表示其他n−kn-knk个点可以任意连边。

这样问题就解决了,时间复杂度为O(n2)O(n^2)O(n2)

code

#include<bits/stdc++.h>
using namespace std;
int n,tot=0,vt=0,a[2005],d[5005],l[5005],r[5005],s[2005],z[2005],siz[2005];
long long ans,f[2005],jc[2005],mi[2005];
long long mod=998244353;
void add(int xx,int yy){l[++tot]=r[xx];d[tot]=yy;r[xx]=tot;
}
void dfs(int u){z[u]=1;siz[u]=1;for(int i=r[u];i;i=l[i]){if(!z[d[i]]){dfs(d[i]);siz[u]+=siz[d[i]];}}
}
int main()
{scanf("%d",&n);jc[0]=mi[0]=1;for(int i=1;i<=n;i++){jc[i]=jc[i-1]*i%mod;mi[i]=mi[i-1]*n%mod;}for(int i=1;i<=n;i++){scanf("%d",&a[i]);if(a[i]==-1) continue;add(i,a[i]);add(a[i],i);}for(int i=1;i<=n;i++){if(a[i]==-1){dfs(i);s[++vt]=siz[i];}}for(int i=1;i<=n;i++){if(!z[i]){dfs(i);ans=(ans+mi[vt])%mod; }}f[0]=1;for(int i=1;i<=vt;i++){for(int j=i;j>=1;j--) f[j]=(f[j]+f[j-1]*s[i]%mod)%mod;}for(int i=1;i<=vt;i++){ans=(ans+f[i]*jc[i-1]%mod*mi[vt-i]%mod)%mod;}printf("%lld",ans);return 0;
}

相关文章:

ARC140D One to One

ARC140D One to One 题目大意 对于一个长度为nnn的整数序列X(x1,x2,…xn)X(x_1,x_2,\dots x_n)X(x1​,x2​,…xn​)&#xff0c;每个元素都在111到nnn之间&#xff0c;令f(X)f(X)f(X)表示以下问题的答案&#xff1a; 有一个nnn个顶点nnn条边的无向图&#xff08;可能有重边和…...

联合身份验证与Cognito

Hello大家好&#xff0c;我们接下来讨论AWS联合身份验证的内容。 AWS联合身份验证 对于考试&#xff0c;联合身份验证部分是一块非常重要的内容。那什么是联合身份验证&#xff0c;它是做什么用的呢&#xff1f; 联合身份验证&#xff0c;是用来允许AWS外部用户&#xff0c;如…...

day18_常用API之String类丶Object类

String概述 java.lang.String 类代表字符串&#xff0c;String类定义的变量可以用于指向字符串对象&#xff0c;同时String类提供了很多操作字符串的功能&#xff0c;我们可以直接使用。Java 程序中的所有字符串文字&#xff08;例如“abc”&#xff09;都为此类的对象 特点:St…...

OSG三维渲染引擎编程学习之五十五:“第五章:OSG场景渲染” 之 “5.13 一维纹理”

目录 第五章 OSG场景渲染 5.13 一维纹理 5.13.1 一维纹理介绍 5.13.2 一维纹理示例 第五章 OSG场景渲染 OSG存在场景树和渲染树,“场景数”的构建在第三章“OSG场景组织”已详细阐明,本章开始...

RTOS随笔之FreeRTOS启动与同步方法

RTOS启动与同步机制RTOS启动任务切换场景任务同步机制队列信号量事件组任务通知任务延时RTOS启动 FreeRTOS在任务创建完成后调用函数vTaskStartScheduler()启动任务调度器。 vTaskStartScheduler()任务启动函数详解 void vTaskStartScheduler( void ) {BaseType_t xReturn;xR…...

【AI/NLP】InstructGPT数据标注问题

文章目录1 背景介绍2 标记员筛选2.1 标记员筛选标准3 数据集及其标注3.1 预训练3.2 微调3.2.1 SFT-demonstration data3.2.2 RM-comparison data3.3 数据集大小4 模型实现1 背景介绍 ChatGPT的训练过程与InstructGPT相近&#xff0c;大致分为三步&#xff1a; SFT&#xff1a…...

三次握手和四次挥手

文章目录TCP三次握手为什么要三次握手三次握手可以携带数据吗&#xff1f;三次握手失败&#xff0c;服务端会如何处理?ISN代表什么&#xff0c;意义&#xff0c;何要动态随机什么是半连接队列第2次握手传回了ACK&#xff0c;为什么还要传回SYN&#xff1f;为什么要四次挥手TCP…...

Jmeter常用断言之响应断言详解

响应断言是最常用的一种断言方法&#xff0c;主要是对响应结果中的文本内容进行断言&#xff0c;比如响应结果是否包含指定的值&#xff0c;或者是否等于指定的值。响应断言可以适用各种返回类型的响应结果&#xff0c;如&#xff1a;Test、html、application/json、applicatio…...

【Python学习笔记】36.Python3 MySQL - mysql-connector 驱动(1)

前言 MySQL 是最流行的关系型数据库管理系统&#xff0c;本章节为大家介绍使用 mysql-connector 来连接使用 MySQL&#xff0c; mysql-connector 是 MySQL 官方提供的驱动器。 Python3 MySQL - mysql-connector 驱动 我们可以使用 pip 命令来安装 mysql-connector&#xff1…...

计算机SCI论文课题设计需要注意什么? - 易智编译EaseEditing

课题设计就要本着严谨性和可行性来进行。实验设计的类型要选择准确&#xff0c;统计学的方法要运用合理&#xff0c;研究对象和观察指标的选择也要符合研究目的的要求&#xff0c;技术路线要清晰明了。 关于课题的设计的可行性也要综合考虑&#xff0c;比如前期的相关工作基础…...

Quartz入门教程

本文参考文章编写 Quartz 官网 Quartz 是 OpenSymphony 开源组织在 Job Scheduling 领域又一个开源项目&#xff0c;是完全由 Java 开发的一个开源任务日程管理系统&#xff0c;“任务进度管理器”就是一个在预先确定&#xff08;被纳入日程&#xff09;的时间到达时&#xff…...

TypeScript 学习之 function

函数可以实现抽象层&#xff0c;模拟类&#xff0c;信息隐藏和模块。 函数有&#xff1a;有名字的函数、匿名函数 在 JavaScript 中的函数 // 有名字的函数 function add(x, y) {return x y; }// 匿名函数 let myAdd function (x, y) {return x y; };函数类型 typescript 可…...

【云计算自学路线】

云计算包含的技术内容和涉及的方向比较多&#xff0c;一定要进行系统化的学习才能更好的掌握这门技术。 云计算作为互联网新技术领域&#xff0c;现阶段也是出于高速发展期&#xff0c;想学习加入云计算行业的小伙伴可以抓紧机会了&#xff0c;跟着小课一起来了解云计算以及它…...

code01 v2黑屏、花屏、死机、断电重启、休眠死机的进来

症状解决 长话简说&#xff0c;症状如下&#xff1a; 使用浏览器、播放视频等&#xff0c;遇到突然死机或花屏死机的情况 关闭硬件加速&#xff0c;如&#xff1a;浏览器中设置关闭硬件加速&#xff0c;出现这种症状的软件都需要设置 开机电流音、播放与暂停时喇叭吱吱想、打…...

分享107个HTML电子商务模板,总有一款适合您

分享107个HTML电子商务模板&#xff0c;总有一款适合您 107个HTML电子商务模板下载链接&#xff1a;https://pan.baidu.com/s/1VW67Wjso1BRpH7O3IlbZwg?pwd0d4s 提取码&#xff1a;0d4s Python采集代码下载链接&#xff1a;采集代码.zip - 蓝奏云 Aplustemplates 购物模板…...

Barra模型因子的构建及应用系列三之Momentum因子

一、摘要 在之前的Barra模型系列文章中&#xff0c;我们已经初步讲解、构建了Size因子和Beta因子&#xff0c;并分别创建了对应的单因子策略。通过回测发现&#xff0c;其中Size因子的小市值效应具有很强的收益能力。而本篇文章将在该系列下进一步构建Momentum因子。 二、模型…...

8.2.1.3 索引合并优化

索引合并访问方法检索具有多个范围扫描的行&#xff0c;并将其结果合并为一个。此访问方法仅合并来自单个表的索引扫描&#xff0c;而不是跨多个表的扫描。合并可以生成其基础扫描的合并、交叉或交叉的合并。 可以使用索引合并的查询示例&#xff1a; SELECT * FROM tbl_name…...

水雨情在线小能手-雨量水位报警站

雨量水位报警站由水位探测器、雨量传感器、报警灯、扩音器、太阳能板和采集传输控制器组成。实时采集水位等级&#xff0c;三个水位探测器对应3个水位等级&#xff0c;当现场水面浸没相应探测器时&#xff0c;本机会实时发出语音报警&#xff0c;同时可发送相应的预警/报警等级…...

【蓝桥杯集训4】双指针专题(6 / 6)

目录 3768. 字符串删减 - 滑动窗口ac 799. 最长连续不重复子序列 - 滑动窗口 800. 数组元素的目标和 - 二分ac 2816. 判断子序列 - 双指针 1238. 日志统计 - 滑动窗口 1240. 完全二叉树的权值 - 双指针 1、前缀和 - 通过了 5/12个数据 2、双指针 3768. 字符串删减 -…...

文件流,gzip解压,压缩

目录 文件画布 写入 &#xff08;空文件Foutnew File(Parent,entry.getName());&#xff09;FileOutputStream outnew FileOutputStream(Fout);BufferedOutputStream Boutnew BufferedOutputStream(out);其他流量基于基础包装文件--文件流---字节流 顺序pbf一般是形成后再压缩目…...

在线开会,来开开圆桌会议吧~

圆桌会议应用场景&#xff1a;适合内部培训、部门会议亦或是头脑风暴等较为轻松的场景&#xff0c;有兴趣的朋友可以联系我来测试哦~~ 上图&#xff1a; 图&#xff1a;圆桌会议应用截图 在圆桌布局之下&#xff0c;企业可以将每一位参会者和座位绑定&#xff0c;1:1模拟线下圆…...

使用营销自动化的 7 大主要优势

对于大多数企业家来说&#xff0c;自动化已成为在数字时代简化业务的必要条件。那么&#xff0c;您可以采取哪些步骤来实施营销自动化呢&#xff1f; 1. 社交媒体整合 拥有吸引人的社交媒体形象是成功的先决条件。您不可能完成所有社交媒体营销任务&#xff0c;使用自动化软件&…...

【图像分类】基于PyTorch搭建GRU实现MNIST手写数字体识别(单/双向GRU,附完整代码和数据集)

写在前面: 首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 在https://blog.csdn.net/AugustMe/article/details/128969138文章中,我们使用了基于PyTorch搭建LSTM实现MNIST手…...

day14_oop_抽象_接口

今日内容 上课同步视频:CuteN饕餮的个人空间_哔哩哔哩_bilibili 同步笔记沐沐霸的博客_CSDN博客-Java2301 零、 复习昨日 一、作业 二、抽象 三、接口 零、 复习昨日 多态的好处: 扩展性强.加入新的功能,不需要改动代码降低代码耦合度(解耦合或者松耦合) 一、抽象类 1.1 抽象类…...

模式识别 | MATLAB实现DNN深度神经网络模式分类识别

分类预测 | MATLAB实现DNN全连接神经网络多特征分类预测 目录 分类预测 | MATLAB实现DNN全连接神经网络多特征分类预测基本介绍任务描述程序设计参考资料基本介绍 DNN的结构不固定,一般神经网络包括输入层、隐藏层和输出层,一个DNN结构只有一个输入层,一个输出层,输入层和输…...

【C++】类和对象三大特性--继承

文章目录1.继承的概念及定义1.1继承的概念1.2 继承定义1.2.1定义格式1.2.2继承关系和访问限定符1.2.3继承基类成员访问方式的变化2.基类和派生类对象赋值转换3.继承中的作用域4.派生类的默认成员函数5.继承与友元6. 继承与静态成员7.复杂的菱形继承及菱形虚拟继承虚拟继承解决数…...

MySQL的存储引擎

目录 一.概念 二.分类 操作 修改默认存储引擎 一.概念 数据库存储引擎是数据库底层软件组织&#xff0c;数据库管理系统&#xff08;DBMS&#xff09;使用数据引擎进行创建、查询、更新和删除数据。不同的存储引擎提供不同的存储机制、索引技巧、锁定水平等功能。现在许多不…...

工程项目管理系统源码-简洁+好用+全面-工程项目管理系统

​ ​工程项目管理系统是指从事工程项目管理的企业&#xff08;以下简称工程项目管理企业&#xff09;受业主委托&#xff0c;按照合同约定&#xff0c;代表业主对工程项目的组织实施进行全过程或若干阶段的管理和服务。 ​系统定义 工程项目管理企业不直接与该工程项目的总承…...

什么是STAR原则?

文章目录&#x1f4cb;前言&#x1f525;省流版&#x1f3af;什么是STAR原则&#x1f3af;进行过程&#x1f4cb;前言 对于大部分还在学习阶段的学生们来说&#xff0c;可能并不了解这个原则的含义&#xff0c;这里的star并不是指英文单词星星。这个原则我也是前段时间才认识到…...

前置知识-初值问题、显式隐式龙格库塔方法、Butcher阵列

1.1.4 龙格一库塔法 将向前欧拉法写成式 (1-37) 的形式, 可以看出它实际上利用了 f ( x , u ) f(x, u) f(x,u) 在 x n...

wordpress4.2.15漏洞/网上开店如何推广自己的网店

数据从业者常在多种工具之间跳来跳去&#xff0c;这种碎片化导致了协作、共享和生产力方面的问题。 企业云数据量的增加以及数据转换、模型构建和可视化工具的出现&#xff0c;推动了现代数据堆栈的崛起。大部分公司都在加大对数据团队的投入&#xff0c;以适应不断变化的需求…...

网站域名登录/百度网首页官网

Form.errors 访问errors属性以获取错误消息的字典&#xff1a; >>> f.errors >{sender&#xff1a;[输入有效的电子邮件地址。]&#xff0c;subject&#xff1a;[此字段为必填项.]。 在这个字典中&#xff0c;键是字段名称&#xff0c;值是表示错误消息的Unicod…...

深圳商城网站哪家做的好/万网官网域名查询

我正在拍摄照片并将其存储到SD卡中,然后将其从SD卡中查看到ImageView中,但获得轮换…我在纵向模式下捕获它,但在横向模式下获得结果图像…有什么我想念的吗&#xff1f;/*** Displaying captured image/video on the screen* */private void previewMedia(boolean isImage) {//…...

做分销网站系统/国外推广网站有什么

也就是说&#xff0c;拉勾网岗位数据请求的网址是不变的&#xff0c;改变的是表单数据&#xff0c;表单数据随着页数改变&#xff0c;请求方式为POST&#xff0c;这里没办法在Pyspider里用循环遍历来获取每一页的数据。也许是我对Pyspider框架了解的不够&#xff0c;还达不到得…...

网站的做用/网络销售挣钱吗

Android中对sqlite加密--SQLCipher 原文:Android中对sqlite加密--SQLCipherandroid中有些时候会将一些隐私数据存放在sqlite数据库中&#xff0c;在root过的手机中通过RE就能够轻松的打开并查看数据库所有内容&#xff0c;所以对隐私数据的保护就有两个方法&#xff1a;①将隐私…...

可以做bim实操题的网站/小程序推广方案

Creo5中如何进行单位的换算 提到绘图单位&#xff0c;在机械行业&#xff0c;默认的图纸单位都是:mm。因为我们国家的机械制图国家标准做了规定。但是都必须在图形右下方的标题栏中进行注明 但是作为初学者&#xff0c;有的时候&#xff0c;建立新文件的时候&#xff0c;没有…...